计算机科学
分割
人工智能
图像分割
语义学(计算机科学)
深度学习
编码器
模式识别(心理学)
编码(集合论)
图像(数学)
特征(语言学)
比例(比率)
机器学习
哲学
物理
集合(抽象数据类型)
程序设计语言
操作系统
量子力学
语言学
作者
Hui-Min Huang,Lanfen Lin,Ruofeng Tong,Hongjie Hu,Qiaowei Zhang,Yutaro Iwamoto,Xian‐Hua Han,Yen‐Wei Chen,Jian Wu
标识
DOI:10.1109/icassp40776.2020.9053405
摘要
Recently, a growing interest has been seen in deep learning-based semantic segmentation. UNet, which is one of deep learning networks with an encoder-decoder architecture, is widely used in medical image segmentation. Combining multi-scale features is one of important factors for accurate segmentation. UNet++ was developed as a modified Unet by designing an architecture with nested and dense skip connections. However, it does not explore sufficient information from full scales and there is still a large room for improvement. In this paper, we propose a novel UNet 3+, which takes advantage of full-scale skip connections and deep supervisions. The full-scale skip connections incorporate low-level details with high-level semantics from feature maps in different scales; while the deep supervision learns hierarchical representations from the full-scale aggregated feature maps. The proposed method is especially benefiting for organs that appear at varying scales. In addition to accuracy improvements, the proposed UNet 3+ can reduce the network parameters to improve the computation efficiency. We further propose a hybrid loss function and devise a classification-guided module to enhance the organ boundary and reduce the over-segmentation in a non-organ image, yielding more accurate segmentation results. The effectiveness of the proposed method is demonstrated on two datasets. The code is available at: github.com/ZJUGiveLab/UNet-Version.
科研通智能强力驱动
Strongly Powered by AbleSci AI