计算机科学
分割
人工智能
图像分割
语义学(计算机科学)
深度学习
编码器
模式识别(心理学)
编码(集合论)
图像(数学)
特征(语言学)
比例(比率)
机器学习
哲学
物理
集合(抽象数据类型)
程序设计语言
操作系统
量子力学
语言学
作者
Huimin Huang,Lanfen Lin,Ruofeng Tong,Hongjie Hu,Qiaowei Zhang,Yutaro Iwamoto,Xian‐Hua Han,Yen‐Wei Chen,Jian Wu
标识
DOI:10.1109/icassp40776.2020.9053405
摘要
Recently, a growing interest has been seen in deep learning-based semantic segmentation. UNet, which is one of deep learning networks with an encoder-decoder architecture, is widely used in medical image segmentation. Combining multi-scale features is one of important factors for accurate segmentation. UNet++ was developed as a modified Unet by designing an architecture with nested and dense skip connections. However, it does not explore sufficient information from full scales and there is still a large room for improvement. In this paper, we propose a novel UNet 3+, which takes advantage of full-scale skip connections and deep supervisions. The full-scale skip connections incorporate low-level details with high-level semantics from feature maps in different scales; while the deep supervision learns hierarchical representations from the full-scale aggregated feature maps. The proposed method is especially benefiting for organs that appear at varying scales. In addition to accuracy improvements, the proposed UNet 3+ can reduce the network parameters to improve the computation efficiency. We further propose a hybrid loss function and devise a classification-guided module to enhance the organ boundary and reduce the over-segmentation in a non-organ image, yielding more accurate segmentation results. The effectiveness of the proposed method is demonstrated on two datasets. The code is available at: github.com/ZJUGiveLab/UNet-Version.
科研通智能强力驱动
Strongly Powered by AbleSci AI