Detecting Malicious Accounts on the Ethereum Blockchain with Supervised Learning

块链 人工智能 深度学习 散列函数
作者
Nitesh Kumar,Ajay Singh,Anand Handa,Sandeep K. Shukla
出处
期刊:Lecture Notes in Computer Science 卷期号:: 94-109 被引量:7
标识
DOI:10.1007/978-3-030-49785-9_7
摘要

Ethereum is a blockchain platform where users can transact cryptocurrency as well as build and deploy decentralized applications using smart contracts. The participants in the Ethereum platform are ‘pseudo-anonymous’ and same user can have multiple accounts under multiple cryptographic identities. As a result, detecting malicious users engaged in fraudulent activities as well as attribution are quite difficult. In the recent past, multiple such activities came to light. In the famous Ethereum DAO attack, hackers exploited bug in smart contracts stole large amount of cryptocurrency using fraudulent transactions. However, activities such as ponzi-scheme, tax evasion by transacting in cryptocurrency, using pseudo-anonymous accounts for receiving ransom payment, consolidation of funds accumulated under multiple identities etc. should be monitored and detected in order to keep legitimate users safe on the platform. In this work, we detect malicious nodes by using supervised machine learning based anomaly detection in the transactional behavior of the accounts. Depending on the two prevalent account types – Externally Owned Account (EOA) and smart contract accounts, we apply two distinct machine learning models. Our models achieve a detection accuracy of 96.54% with 0.92% false-positive ratio and 96.82% with 0.78% false-positive ratio for EOA and smart contract account analysis, respectively. We also find the listing of 85 new malicious EOA and 1 smart contract addresses between 20 January 2020 and 24 February 2020. We evaluate our model on these, and the accuracy of that evaluation is 96.21% with 3% false positive.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英勇羿完成签到,获得积分10
1秒前
明亮冬易发布了新的文献求助10
1秒前
淡淡冬瓜完成签到,获得积分10
2秒前
sn发布了新的文献求助10
2秒前
新酱完成签到 ,获得积分10
2秒前
YuanbinMao应助吴西西采纳,获得10
3秒前
张大完成签到,获得积分10
3秒前
7秒前
125dd发布了新的文献求助10
7秒前
xjcy应助枯藤老柳树采纳,获得10
9秒前
完美世界应助铭泽采纳,获得10
10秒前
YuanbinMao应助sn采纳,获得10
11秒前
伶俐的谷波关注了科研通微信公众号
12秒前
12秒前
13秒前
13秒前
bkagyin应助小白生信采纳,获得10
14秒前
上官若男应助张北北采纳,获得10
14秒前
lulu完成签到 ,获得积分10
15秒前
16秒前
17秒前
ding应助章章采纳,获得10
19秒前
nihao完成签到,获得积分10
19秒前
19秒前
科研通AI2S应助浅笑成风采纳,获得10
20秒前
24秒前
8R60d8应助直率的傲安采纳,获得20
24秒前
张文涛发布了新的文献求助10
25秒前
yy完成签到,获得积分20
26秒前
哥哥喜欢格格完成签到 ,获得积分10
26秒前
27秒前
29秒前
蓝山完成签到,获得积分10
29秒前
31秒前
贾贾闇完成签到,获得积分10
31秒前
31秒前
非泥发布了新的文献求助30
32秒前
超帅向雁发布了新的文献求助10
35秒前
35秒前
小白生信发布了新的文献求助10
35秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3228196
求助须知:如何正确求助?哪些是违规求助? 2876005
关于积分的说明 8193611
捐赠科研通 2543161
什么是DOI,文献DOI怎么找? 1373580
科研通“疑难数据库(出版商)”最低求助积分说明 646814
邀请新用户注册赠送积分活动 621310