3D Reconstruction for Super-Resolution CT Images in the Internet of Health Things Using Deep Learning

人工智能 计算机科学 深度学习 计算机视觉 过程(计算) 最小边界框 迭代重建 互联网 像素 图像(数学) 模式识别(心理学) 操作系统 万维网
作者
Jing Zhang,Ling Rui Gong,Keping Yu,Xin Qi,Wen Zheng,Qiaozhi Hua,San Hlaing Myint
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:8: 121513-121525 被引量:14
标识
DOI:10.1109/access.2020.3007024
摘要

The Internet of Health Things (IoHT) enables health devices to connect to the Internet and communicate with each other, which provides the high-accuracy and high-security diagnosis result in the medical area. As essential parts of the IoHT, computed tomography (CT) images help doctors diagnose disease. In the traditional disease diagnosing process, low-resolution medical CT images produce low-accuracy diagnosis results for microlesions. Moreover, CT images can only provide 2D information about organs, and doctors should estimate the 3D shape of a lesion based on experience. To solve these problems, we propose a 3D reconstruction method for secure super-resolution computed tomography (SRCT) images in the IoHT using deep learning. First, we use deep learning to obtain secure SRCT images from low-resolution images in the IoHT. To this end, we adopt a conditional generative adversarial network (CGAN) based on the edge detection loss function (EDLF) in the deep learning process, namely EDLF-CGAN algorithm. In this algorithm, the CGAN is employed to generate SRCT images with luminance and contrast as the input auxiliary conditions, which can improve the accuracy of super-resolution (SR) images. An EDLF is proposed to consider the edge features in the generated SRCT images, which reduces the deformation of generated image. Second, we apply the secure SR images generated from the deep learning method to perform 3D reconstruction. An advanced ray casting 3D reconstruction algorithm that can reduce the number of rays by selecting the appropriate bounding box is proposed. Compared with the traditional algorithm, the proposed ray casting 3D reconstruction algorithm can reduce the time and memory cost. The experimental results show that our EDLF-CGAN has a better SR reconstruction effect than other algorithms via the indicators of the peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). In addition, our advanced ray casting 3D reconstruction algorithm greatly improves the efficiency compared with the traditional ray casting algorithm.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ljy发布了新的文献求助10
刚刚
Auh完成签到,获得积分10
1秒前
海蓝博发布了新的文献求助10
3秒前
3秒前
cjg完成签到,获得积分10
3秒前
绿野仙踪发布了新的文献求助10
4秒前
5秒前
LOMO发布了新的文献求助10
5秒前
隐形曼青应助向上采纳,获得10
5秒前
cxb完成签到,获得积分10
6秒前
8秒前
Lucas应助ljy采纳,获得10
8秒前
aa发布了新的文献求助50
8秒前
徐梦完成签到,获得积分10
9秒前
纸张猫猫完成签到,获得积分10
10秒前
浮游应助dong采纳,获得10
10秒前
浮游应助星辰坠于海采纳,获得50
11秒前
小伊001完成签到,获得积分10
11秒前
研友_VZG7GZ应助王不留行采纳,获得10
11秒前
cxb发布了新的文献求助10
11秒前
16秒前
zzy关闭了zzy文献求助
16秒前
16秒前
16秒前
BowieHuang应助科研通管家采纳,获得10
16秒前
17秒前
17秒前
17秒前
Keyto7应助嬴政飞采纳,获得10
17秒前
周老师完成签到 ,获得积分10
19秒前
LOMO完成签到,获得积分10
20秒前
早安发布了新的文献求助30
20秒前
20秒前
一坨发布了新的文献求助10
22秒前
22秒前
Pan完成签到,获得积分10
23秒前
科研通AI6应助aa采纳,获得10
23秒前
向上发布了新的文献求助10
24秒前
情怀应助反暗采纳,获得10
24秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563681
求助须知:如何正确求助?哪些是违规求助? 4648553
关于积分的说明 14685532
捐赠科研通 4590511
什么是DOI,文献DOI怎么找? 2518648
邀请新用户注册赠送积分活动 1491204
关于科研通互助平台的介绍 1462478