3D Reconstruction for Super-Resolution CT Images in the Internet of Health Things Using Deep Learning

人工智能 计算机科学 深度学习 计算机视觉 过程(计算) 最小边界框 迭代重建 互联网 像素 图像(数学) 模式识别(心理学) 操作系统 万维网
作者
Jing Zhang,Ling Rui Gong,Keping Yu,Xin Qi,Wen Zheng,Qiaozhi Hua,San Hlaing Myint
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:8: 121513-121525 被引量:14
标识
DOI:10.1109/access.2020.3007024
摘要

The Internet of Health Things (IoHT) enables health devices to connect to the Internet and communicate with each other, which provides the high-accuracy and high-security diagnosis result in the medical area. As essential parts of the IoHT, computed tomography (CT) images help doctors diagnose disease. In the traditional disease diagnosing process, low-resolution medical CT images produce low-accuracy diagnosis results for microlesions. Moreover, CT images can only provide 2D information about organs, and doctors should estimate the 3D shape of a lesion based on experience. To solve these problems, we propose a 3D reconstruction method for secure super-resolution computed tomography (SRCT) images in the IoHT using deep learning. First, we use deep learning to obtain secure SRCT images from low-resolution images in the IoHT. To this end, we adopt a conditional generative adversarial network (CGAN) based on the edge detection loss function (EDLF) in the deep learning process, namely EDLF-CGAN algorithm. In this algorithm, the CGAN is employed to generate SRCT images with luminance and contrast as the input auxiliary conditions, which can improve the accuracy of super-resolution (SR) images. An EDLF is proposed to consider the edge features in the generated SRCT images, which reduces the deformation of generated image. Second, we apply the secure SR images generated from the deep learning method to perform 3D reconstruction. An advanced ray casting 3D reconstruction algorithm that can reduce the number of rays by selecting the appropriate bounding box is proposed. Compared with the traditional algorithm, the proposed ray casting 3D reconstruction algorithm can reduce the time and memory cost. The experimental results show that our EDLF-CGAN has a better SR reconstruction effect than other algorithms via the indicators of the peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). In addition, our advanced ray casting 3D reconstruction algorithm greatly improves the efficiency compared with the traditional ray casting algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
plant完成签到,获得积分10
1秒前
lyt完成签到,获得积分10
1秒前
2秒前
3秒前
敏感网络完成签到,获得积分20
4秒前
kh453发布了新的文献求助10
4秒前
4秒前
子爵木完成签到 ,获得积分10
4秒前
HC发布了新的文献求助30
5秒前
无限鞅发布了新的文献求助10
5秒前
SherlockLiu完成签到,获得积分20
5秒前
6秒前
吴岳发布了新的文献求助10
7秒前
陆靖易完成签到,获得积分10
7秒前
9秒前
Bella完成签到 ,获得积分10
9秒前
yhl发布了新的文献求助10
10秒前
11秒前
震动的乐天完成签到,获得积分10
12秒前
13秒前
14秒前
Hello应助xuanxuan采纳,获得10
15秒前
村长热爱美丽完成签到 ,获得积分10
15秒前
一衣完成签到,获得积分20
15秒前
15秒前
17秒前
明理世倌发布了新的文献求助10
17秒前
今后应助niu1采纳,获得10
18秒前
KONG发布了新的文献求助10
18秒前
爆米花应助成梦采纳,获得10
18秒前
yhl完成签到,获得积分20
19秒前
皮皮发布了新的文献求助10
20秒前
圆圆的脑袋应助SCISSH采纳,获得10
21秒前
阳光的雁山完成签到,获得积分10
21秒前
霖宸羽完成签到,获得积分10
22秒前
24秒前
无奈的代珊完成签到 ,获得积分10
24秒前
25秒前
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808