3D Reconstruction for Super-Resolution CT Images in the Internet of Health Things Using Deep Learning

人工智能 计算机科学 深度学习 计算机视觉 过程(计算) 最小边界框 迭代重建 互联网 像素 图像(数学) 模式识别(心理学) 操作系统 万维网
作者
Jing Zhang,Ling Rui Gong,Keping Yu,Xin Qi,Wen Zheng,Qiaozhi Hua,San Hlaing Myint
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:8: 121513-121525 被引量:14
标识
DOI:10.1109/access.2020.3007024
摘要

The Internet of Health Things (IoHT) enables health devices to connect to the Internet and communicate with each other, which provides the high-accuracy and high-security diagnosis result in the medical area. As essential parts of the IoHT, computed tomography (CT) images help doctors diagnose disease. In the traditional disease diagnosing process, low-resolution medical CT images produce low-accuracy diagnosis results for microlesions. Moreover, CT images can only provide 2D information about organs, and doctors should estimate the 3D shape of a lesion based on experience. To solve these problems, we propose a 3D reconstruction method for secure super-resolution computed tomography (SRCT) images in the IoHT using deep learning. First, we use deep learning to obtain secure SRCT images from low-resolution images in the IoHT. To this end, we adopt a conditional generative adversarial network (CGAN) based on the edge detection loss function (EDLF) in the deep learning process, namely EDLF-CGAN algorithm. In this algorithm, the CGAN is employed to generate SRCT images with luminance and contrast as the input auxiliary conditions, which can improve the accuracy of super-resolution (SR) images. An EDLF is proposed to consider the edge features in the generated SRCT images, which reduces the deformation of generated image. Second, we apply the secure SR images generated from the deep learning method to perform 3D reconstruction. An advanced ray casting 3D reconstruction algorithm that can reduce the number of rays by selecting the appropriate bounding box is proposed. Compared with the traditional algorithm, the proposed ray casting 3D reconstruction algorithm can reduce the time and memory cost. The experimental results show that our EDLF-CGAN has a better SR reconstruction effect than other algorithms via the indicators of the peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). In addition, our advanced ray casting 3D reconstruction algorithm greatly improves the efficiency compared with the traditional ray casting algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
球球的铲屎官应助a成采纳,获得10
刚刚
薄饼哥丶发布了新的文献求助10
刚刚
张童鞋发布了新的文献求助20
1秒前
烟花应助小虫子采纳,获得10
1秒前
灯儿发布了新的文献求助30
1秒前
1秒前
无花果应助涛子11111采纳,获得10
1秒前
1秒前
明亮哈密瓜完成签到,获得积分10
2秒前
3秒前
hkh发布了新的文献求助10
3秒前
1134发布了新的文献求助10
3秒前
越过山丘发布了新的文献求助10
4秒前
4秒前
悦耳的井完成签到,获得积分10
4秒前
风逝完成签到,获得积分10
5秒前
酸甜苦辣静夜思关注了科研通微信公众号
5秒前
6秒前
2233223发布了新的文献求助10
6秒前
7秒前
7秒前
电子完成签到,获得积分20
8秒前
薄饼哥丶完成签到,获得积分10
8秒前
fly完成签到 ,获得积分10
8秒前
9秒前
9秒前
Majiko完成签到,获得积分10
10秒前
1134完成签到,获得积分20
10秒前
10秒前
Miley完成签到,获得积分10
10秒前
开开发布了新的文献求助10
11秒前
昀宇完成签到,获得积分10
11秒前
Hello应助科研钉采纳,获得10
12秒前
12秒前
嗯哼发布了新的文献求助10
12秒前
12秒前
哈哈哈哈哈关注了科研通微信公众号
12秒前
林珍发布了新的文献求助10
13秒前
天天发布了新的文献求助10
13秒前
sldl完成签到,获得积分10
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009905
求助须知:如何正确求助?哪些是违规求助? 3549896
关于积分的说明 11304149
捐赠科研通 3284441
什么是DOI,文献DOI怎么找? 1810658
邀请新用户注册赠送积分活动 886424
科研通“疑难数据库(出版商)”最低求助积分说明 811406