3D Reconstruction for Super-Resolution CT Images in the Internet of Health Things Using Deep Learning

人工智能 计算机科学 深度学习 计算机视觉 过程(计算) 最小边界框 迭代重建 互联网 像素 图像(数学) 模式识别(心理学) 操作系统 万维网
作者
Jing Zhang,Ling Rui Gong,Keping Yu,Xin Qi,Wen Zheng,Qiaozhi Hua,San Hlaing Myint
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:8: 121513-121525 被引量:14
标识
DOI:10.1109/access.2020.3007024
摘要

The Internet of Health Things (IoHT) enables health devices to connect to the Internet and communicate with each other, which provides the high-accuracy and high-security diagnosis result in the medical area. As essential parts of the IoHT, computed tomography (CT) images help doctors diagnose disease. In the traditional disease diagnosing process, low-resolution medical CT images produce low-accuracy diagnosis results for microlesions. Moreover, CT images can only provide 2D information about organs, and doctors should estimate the 3D shape of a lesion based on experience. To solve these problems, we propose a 3D reconstruction method for secure super-resolution computed tomography (SRCT) images in the IoHT using deep learning. First, we use deep learning to obtain secure SRCT images from low-resolution images in the IoHT. To this end, we adopt a conditional generative adversarial network (CGAN) based on the edge detection loss function (EDLF) in the deep learning process, namely EDLF-CGAN algorithm. In this algorithm, the CGAN is employed to generate SRCT images with luminance and contrast as the input auxiliary conditions, which can improve the accuracy of super-resolution (SR) images. An EDLF is proposed to consider the edge features in the generated SRCT images, which reduces the deformation of generated image. Second, we apply the secure SR images generated from the deep learning method to perform 3D reconstruction. An advanced ray casting 3D reconstruction algorithm that can reduce the number of rays by selecting the appropriate bounding box is proposed. Compared with the traditional algorithm, the proposed ray casting 3D reconstruction algorithm can reduce the time and memory cost. The experimental results show that our EDLF-CGAN has a better SR reconstruction effect than other algorithms via the indicators of the peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). In addition, our advanced ray casting 3D reconstruction algorithm greatly improves the efficiency compared with the traditional ray casting algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
正直映萱完成签到,获得积分10
刚刚
塘泥J完成签到,获得积分10
刚刚
呆萌的寄云完成签到,获得积分10
刚刚
1秒前
wikn完成签到,获得积分10
2秒前
2秒前
2秒前
科研通AI5应助勤奋的雪曼采纳,获得10
3秒前
cw关闭了cw文献求助
3秒前
3秒前
4秒前
高尚完成签到,获得积分10
4秒前
seesun发布了新的文献求助10
4秒前
5秒前
莫相逢完成签到,获得积分10
5秒前
leaolf应助cff采纳,获得10
6秒前
6秒前
赘婿应助青花采纳,获得10
7秒前
复杂函完成签到,获得积分10
7秒前
zhangxueqing完成签到,获得积分10
7秒前
陈小虎发布了新的文献求助10
7秒前
木木完成签到,获得积分10
8秒前
虚心惜筠完成签到,获得积分10
8秒前
微笑亿先发布了新的文献求助10
8秒前
嘻嘻嘻发布了新的文献求助30
9秒前
黎落发布了新的文献求助20
10秒前
小研发布了新的文献求助10
10秒前
11秒前
MNing发布了新的文献求助10
11秒前
HAHAHAPPY关注了科研通微信公众号
11秒前
11秒前
REN发布了新的文献求助10
12秒前
12秒前
可爱的函函应助聪明蛋采纳,获得10
12秒前
小蘑菇应助柚子采纳,获得10
12秒前
12秒前
柠萌完成签到,获得积分10
13秒前
li发布了新的文献求助10
14秒前
陈BB发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4575607
求助须知:如何正确求助?哪些是违规求助? 3995066
关于积分的说明 12367556
捐赠科研通 3668746
什么是DOI,文献DOI怎么找? 2021988
邀请新用户注册赠送积分活动 1056005
科研通“疑难数据库(出版商)”最低求助积分说明 943343