A Dilated Inception Network for Visual Saliency Prediction

计算机科学 人工智能 卷积神经网络 推论 模式识别(心理学) 规范化(社会学) 卷积(计算机科学) 核(代数) 计算 水准点(测量) 膨胀(度量空间) 特征提取 机器学习 人工神经网络 算法 数学 大地测量学 组合数学 社会学 人类学 地理
作者
Sheng Yang,Guosheng Lin,Qiuping Jiang,Weisi Lin
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:22 (8): 2163-2176 被引量:132
标识
DOI:10.1109/tmm.2019.2947352
摘要

Recently, with the advent of deep convolutional neural networks (DCNN), the improvements in visual saliency prediction research are impressive. One possible direction to approach the next improvement is to fully characterize the multi-scale saliency-influential factors with a computationally-friendly module in DCNN architectures. In this work, we propose an end-to-end dilated inception network (DINet) for visual saliency prediction. It captures multi-scale contextual features effectively with very limited extra parameters. Instead of utilizing parallel standard convolutions with different kernel sizes as the existing inception module, our proposed dilated inception module (DIM) uses parallel dilated convolutions with different dilation rates which can significantly reduce the computation load while enriching the diversity of receptive fields in feature maps. Moreover, the performance of our saliency model is further improved by using a set of linear normalization-based probability distribution distance metrics as loss functions. As such, we can formulate saliency prediction as a global probability distribution prediction task for better saliency inference instead of a pixel-wise regression problem. Experimental results on several challenging saliency benchmark datasets demonstrate that our DINet with proposed loss functions can achieve state-of-the-art performance with shorter inference time.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
秒秒发布了新的文献求助10
刚刚
刚刚
所所应助kkk采纳,获得10
1秒前
苗觉觉发布了新的文献求助10
2秒前
科目三应助zhj采纳,获得10
3秒前
张张zzz完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
Hello应助发文章12138采纳,获得10
4秒前
4秒前
孙浩洋发布了新的文献求助10
4秒前
LL关闭了LL文献求助
4秒前
春意盎然完成签到,获得积分10
4秒前
chenyao发布了新的文献求助10
4秒前
4秒前
4秒前
李扒皮完成签到,获得积分10
4秒前
所所应助你维好困采纳,获得10
5秒前
CodeCraft应助你维好困采纳,获得10
5秒前
吕亦寒完成签到,获得积分10
5秒前
Jasper应助清浅采纳,获得10
5秒前
whiteandpink098完成签到,获得积分10
5秒前
6秒前
6秒前
野性的牛排完成签到,获得积分10
6秒前
连长发布了新的文献求助10
6秒前
李健应助ernest采纳,获得10
6秒前
Jasper应助love454106采纳,获得10
7秒前
WTL完成签到,获得积分10
7秒前
追光者完成签到,获得积分10
8秒前
8秒前
赘婿应助萤火虫采纳,获得10
8秒前
hbb完成签到,获得积分20
9秒前
9秒前
Huang发布了新的文献求助10
10秒前
Akim应助1a采纳,获得10
10秒前
10秒前
婷123发布了新的文献求助10
10秒前
李爱国应助Voyage采纳,获得10
10秒前
材料小白发布了新的文献求助10
11秒前
德容发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667160
求助须知:如何正确求助?哪些是违规求助? 4884250
关于积分的说明 15118778
捐赠科研通 4826049
什么是DOI,文献DOI怎么找? 2583692
邀请新用户注册赠送积分活动 1537843
关于科研通互助平台的介绍 1496006