Weakly Supervised Fine-grained Image Classification via Correlation-guided Discriminative Learning

模式识别(心理学) 深度学习 机器学习 卷积神经网络 图像(数学) 特征提取 特征(语言学) 特征学习 监督学习 支持向量机 分类器(UML)
作者
Zhihui Wang,Shijie Wang,Pengbo Zhang,Haojie Li,Wei Zhong,Jianjun Liu
出处
期刊:ACM Multimedia 被引量:26
标识
DOI:10.1145/3343031.3350976
摘要

Weakly supervised fine-grained image classification (WFGIC) aims at learning to recognize hundreds of subcategories in each basic-level category with only image level labels available. It is extremely challenging and existing methods mainly focus on the discriminative semantic parts or regions localization as the key differences among different subcategories are subtle and local. However, they localize these regions independently while neglecting the fact that regions are mutually correlated and region groups can be more discriminative. Meanwhile, most current work tends to derive features directly from the output of CNN and rarely considers the correlation within the feature vector. To address these issues, we propose an end-to-end Correlation-guided Discriminative Learning (CDL) model to fully mine and exploit the discriminative potentials of correlations for WFGIC globally and locally. From the global perspective, a discriminative region grouping (DRG) sub-network is proposed which first establishes correlation between regions and then enhances each region by weighted aggregating all the correlation from other regions to it. By this means each region's representation encodes the global image-level context and thus is more robust; meanwhile, through learning the correlation between discriminative regions, the network is guided to implicitly discover the discriminative region groups which are more powerful for WFGIC. From the local perspective, a discriminative feature strengthening sub-network (DFS) is proposed to mine and learn the internal spatial correlation among elements of each patch's feature vector, to improve its discriminative power locally by jointly emphasizes informative elements while suppresses the useless ones. Extensive experiments demonstrate the effectiveness of proposed DRG and DFS sub-networks, and show that the CDL model achieves state-of-the-art performance both in accuracy and efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
for_abSCI完成签到,获得积分10
刚刚
刚刚
Shirley应助hkh采纳,获得10
1秒前
OCDer发布了新的文献求助10
4秒前
健康豆芽菜完成签到 ,获得积分10
4秒前
Enothan完成签到 ,获得积分10
4秒前
Owen发布了新的文献求助10
4秒前
yongfeng应助直率的柚子采纳,获得10
5秒前
5秒前
6秒前
肖一甜发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
派大星完成签到 ,获得积分10
12秒前
13秒前
14秒前
MJX完成签到,获得积分10
14秒前
Hanson完成签到,获得积分10
15秒前
shoanofna发布了新的文献求助10
15秒前
科视完成签到,获得积分10
15秒前
Ls完成签到 ,获得积分10
18秒前
19秒前
19秒前
阿池完成签到,获得积分10
19秒前
无语的从云完成签到,获得积分10
20秒前
21秒前
飞鱼完成签到,获得积分10
21秒前
大勺完成签到 ,获得积分10
21秒前
王正一完成签到 ,获得积分10
22秒前
月屿完成签到 ,获得积分10
22秒前
23秒前
大模型应助小号采纳,获得10
23秒前
24秒前
样子完成签到,获得积分10
24秒前
jaslek发布了新的文献求助10
24秒前
破伤疯完成签到 ,获得积分10
24秒前
酷炫非常完成签到 ,获得积分10
26秒前
宝川发布了新的文献求助10
27秒前
28秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137230
求助须知:如何正确求助?哪些是违规求助? 2788312
关于积分的说明 7785628
捐赠科研通 2444330
什么是DOI,文献DOI怎么找? 1299894
科研通“疑难数据库(出版商)”最低求助积分说明 625639
版权声明 601023