数学
猜想
组合数学
学位(音乐)
多项式的
三角洲
数学分析
物理
天文
声学
作者
Paul Balister,Béla Bollobás,Robert Morris,Julian Sahasrabudhe,Marius Tiba
标识
DOI:10.4007/annals.2020.192.3.6
摘要
We show that there exist absolute constants $\delta > \delta > 0$ such that, for all $n \ge 2$, there exists a polynomial $P$ of degree $n$, with coefficients in $\{-1,1\}$, such that \[ \delta\sqrt{n} \le |P(z)| \le \Delta \sqrt{n} \] for all $z \in \mathbb{C}$ with $|z|=1$. This confirms a conjecture of Littlewood from 1966.
科研通智能强力驱动
Strongly Powered by AbleSci AI