摘要
Synechococcus cyanobacteria are widespread in the marine environment, as the extensive pigment diversity within their light-harvesting phycobilisomes enables them to utilize various wavelengths of light for photosynthesis. The phycobilisomes of Synechococcus sp. RS9916 contain two forms of the protein phycoerythrin (PEI and PEII), each binding two chromophores, green-light absorbing phycoerythrobilin and blue-light absorbing phycourobilin. These chromophores are ligated to specific cysteines via bilin lyases, and some of these enzymes, called lyase isomerases, attach phycoerythrobilin and simultaneously isomerize it to phycourobilin. MpeV is a putative lyase isomerase whose role in PEI and PEII biosynthesis is not clear. We examined MpeV in RS9916 using recombinant protein expression, absorbance spectroscopy, and tandem mass spectrometry. Our results show that MpeV is the lyase isomerase that covalently attaches a doubly linked phycourobilin to two cysteine residues (C50, C61) on the β-subunit of both PEI (CpeB) and PEII (MpeB). MpeV activity requires that CpeB or MpeB is first chromophorylated by the lyase CpeS (which adds phycoerythrobilin to C82). Its activity is further enhanced by CpeZ (a homolog of a chaperone-like protein first characterized in Fremyella diplosiphon). MpeV showed no detectable activity on the α-subunits of PEI or PEII. The mechanism by which MpeV links the A and D rings of phycourobilin to C50 and C61 of CpeB was also explored using site-directed mutants, revealing that linkage at the A ring to C50 is a critical step in chromophore attachment, isomerization, and stability. These data provide novel insights into β-PE biosynthesis and advance our understanding of the mechanisms guiding lyase isomerases. Synechococcus cyanobacteria are widespread in the marine environment, as the extensive pigment diversity within their light-harvesting phycobilisomes enables them to utilize various wavelengths of light for photosynthesis. The phycobilisomes of Synechococcus sp. RS9916 contain two forms of the protein phycoerythrin (PEI and PEII), each binding two chromophores, green-light absorbing phycoerythrobilin and blue-light absorbing phycourobilin. These chromophores are ligated to specific cysteines via bilin lyases, and some of these enzymes, called lyase isomerases, attach phycoerythrobilin and simultaneously isomerize it to phycourobilin. MpeV is a putative lyase isomerase whose role in PEI and PEII biosynthesis is not clear. We examined MpeV in RS9916 using recombinant protein expression, absorbance spectroscopy, and tandem mass spectrometry. Our results show that MpeV is the lyase isomerase that covalently attaches a doubly linked phycourobilin to two cysteine residues (C50, C61) on the β-subunit of both PEI (CpeB) and PEII (MpeB). MpeV activity requires that CpeB or MpeB is first chromophorylated by the lyase CpeS (which adds phycoerythrobilin to C82). Its activity is further enhanced by CpeZ (a homolog of a chaperone-like protein first characterized in Fremyella diplosiphon). MpeV showed no detectable activity on the α-subunits of PEI or PEII. The mechanism by which MpeV links the A and D rings of phycourobilin to C50 and C61 of CpeB was also explored using site-directed mutants, revealing that linkage at the A ring to C50 is a critical step in chromophore attachment, isomerization, and stability. These data provide novel insights into β-PE biosynthesis and advance our understanding of the mechanisms guiding lyase isomerases. Marine cyanobacteria in the genus Synechococcus are the second most abundant oxygenic phototrophs and contribute significantly to global ocean primary productivity and carbon cycling (1Flombaum P. Gallegos J.L. Gordillo R.A. Rincon J. Zabala L.L. Jiao N. Karl D.M. Li W.K. Lomas M.W. Veneziano D. Vera C.S. Vrugt J.A. Martiny A.C. Present and future global distributions of the marine cyanobacteria Prochlorococcus and Synechococcus.Proc. Natl. Acad. Sci. U. S. A. 2013; 110: 9824-9829Crossref PubMed Scopus (789) Google Scholar). Synechococcus are widespread in part because of their efficiency at harvesting available light using their antenna or phycobilisome (PBS), which is tuned to absorb light colors from portions of the visible spectrum in which chlorophyll absorbs poorly (2Glazer A.N. Adaptive variation in phycobilisome structure.Adv. Mol. Cell Biol. 1994; 10: 119-149Crossref Scopus (49) Google Scholar, 3Sanfilippo J.E. Garczarek L. Partensky F. Kehoe D.M. Chromatic acclimation in cyanobacteria: a diverse and widespread process for optimizing photosynthesis.Ann. Rev. Microbiol. 2019; 73: 407-433Crossref PubMed Scopus (46) Google Scholar, 4Schluchter W.M. Shen G. Alvey R.M. Biswas A. Saunee N.A. Williams S.R. Miller C.A. Bryant D.A. Phycobiliprotein biosynthesis in cyanobacteria: structure and function of enzymes involved in post-translational modification.Adv. Exp. Med. Biol. 2010; 675: 211-228Crossref PubMed Scopus (56) Google Scholar). Marine isolates of Synechococcus have a complex PBS structure comprised of up to four highly pigmented phycobiliproteins (PBP). The PBS core is made of allophycocyanin and is surrounded by six to eight rods made of phycocyanin and up to two types of phycoerythrin (PEI and PEII). These extended rod structures increase the spectral range of the PBS light harvesting capabilities (Fig. 1) (1Flombaum P. Gallegos J.L. Gordillo R.A. Rincon J. Zabala L.L. Jiao N. Karl D.M. Li W.K. Lomas M.W. Veneziano D. Vera C.S. Vrugt J.A. Martiny A.C. Present and future global distributions of the marine cyanobacteria Prochlorococcus and Synechococcus.Proc. Natl. Acad. Sci. U. S. A. 2013; 110: 9824-9829Crossref PubMed Scopus (789) Google Scholar, 3Sanfilippo J.E. Garczarek L. Partensky F. Kehoe D.M. Chromatic acclimation in cyanobacteria: a diverse and widespread process for optimizing photosynthesis.Ann. Rev. Microbiol. 2019; 73: 407-433Crossref PubMed Scopus (46) Google Scholar, 5Glazer A.N. Phycobiliproteins - a family of valuable, widely used fluorophores.J. Appl. Phycol. 1994; 6: 105-112Crossref Scopus (315) Google Scholar, 6Everroad C. Six C. Partensky F. Thomas J.-C. Holtzendorff J. Wood A.M. Biochemical bases of type IV chromatic adaptation in marine Synechococcus spp.J. Bacteriol. 2006; 188: 3345-3356Crossref PubMed Scopus (91) Google Scholar, 7Ong L.J. Glazer A.N. Phycoerythrins of marine unicellular cyanobacteria. I. Bilin types and locations and energy transfer pathways in Synechococcus spp. phycoerythrins.J. Biol. Chem. 1991; 266: 9515-9527Abstract Full Text PDF PubMed Google Scholar). PEI and PEII are homologous PBP, each composed of an α- and a β-subunit arranged in a hetero-hexameric (αβ)6 torus and stacked with the help of linker polypeptides to form the distal portion of the rods (Fig. 1) (4Schluchter W.M. Shen G. Alvey R.M. Biswas A. Saunee N.A. Williams S.R. Miller C.A. Bryant D.A. Phycobiliprotein biosynthesis in cyanobacteria: structure and function of enzymes involved in post-translational modification.Adv. Exp. Med. Biol. 2010; 675: 211-228Crossref PubMed Scopus (56) Google Scholar, 8Betz M. One century of protein crystallography: the phycobiliproteins.Biol. Chem. 1997; 378: 167-176PubMed Google Scholar, 9Glazer A.N. Phycobilisomes.Methods Enzymol. 1988; 167: 304-312Crossref Scopus (81) Google Scholar). The large pigment diversity of the PBS is not only due to its variable PBP content but also to the variable proportion of covalently bound linear tetrapyrrole bilins, posttranslationally added to PBP. Highly conserved cysteine (C) residues of PEI and PEII serve as the sites for covalent attachment of bilins via the activity of specialized enzymes known as bilin lyases. Based on sequence similarities, three major groups or clans of bilin lyases have been characterized: CpcS/U type, CpcT type, and CpcE/F type, (10Saunée N.A. Williams S.R. Bryant D.A. Schluchter W.M. Biogenesis of phycobiliproteins. II. CpcS-I and CpcU comprise the heterodimeric bilin lyase that attaches phycocyanobilin to Cys-82 of beta -phycocyanin and Cys-81 of allophycocyanin subunits in Synechococcus sp. PCC 7002.J. Biol. Chem. 2008; 283: 7513-7522Abstract Full Text Full Text PDF PubMed Scopus (56) Google Scholar, 11Shen G. Saunee N.A. Williams S.R. Gallo E.F. Schluchter W.M. Bryant D.A. Identification and characterization of a new class of bilin lyase: the cpcT gene encodes a bilin lyase responsible for attachment of phycocyanobilin to Cys-153 on the beta subunit of phycocyanin in Synechococcus sp. PCC 7002.J. Biol. Chem. 2006; 281: 17768-17778Abstract Full Text Full Text PDF PubMed Scopus (80) Google Scholar, 12Zhao K.-H. Su P. Tu J.-M. Wang X. Liu H. Ploscher M. Eichacker L. Yang B. Zhou M. Scheer H. Phycobilin:cysteine-84 biliprotein lyase, a near-universal lyase for cysteine-84-binding sites in cyanobacterial phycobiliproteins.Proc. Natl. Acad. Sci. U. S. A. 2007; 104: 14300-14305Crossref PubMed Scopus (88) Google Scholar, 13Fairchild C.D. Zhao J. Zhou J. Colson S.E. Bryant D.A. Glazer A.N. Phycocyanin α subunit phycocyanobilin lyase.Proc. Natl. Acad. Sci. U. S. A. 1992; 89: 7017-7021Crossref PubMed Scopus (116) Google Scholar, 14Fairchild C.D. Glazer A.N. Oligomeric structure, enzyme kinetics, and substrate specificity of the phycocyanin alpha subunit phycocyanobilin lyase.J. Biol. Chem. 1994; 269: 8686-8694Abstract Full Text PDF PubMed Google Scholar). Each clan differs from one another in primary amino acid sequence and structure as well as bilin chromophore and attachment site specificity. Solved crystal structures for members of the distantly related CpcS/U (Protein Data Bank, (PDB): 3BDR; (4Schluchter W.M. Shen G. Alvey R.M. Biswas A. Saunee N.A. Williams S.R. Miller C.A. Bryant D.A. Phycobiliprotein biosynthesis in cyanobacteria: structure and function of enzymes involved in post-translational modification.Adv. Exp. Med. Biol. 2010; 675: 211-228Crossref PubMed Scopus (56) Google Scholar, 15Kronfel C.M. Kuzin A.P. Forouhar F. Biswas A. Su M. Lew S. Seetharaman J. Xiao R. Everett J.K. Ma L.-C. Acton T.B. Montelione G.T. Hunt J.F. Paul C.E. Dragomani T.M. et al.Structural and biochemical characterization of the bilin lyase CpcS from Thermosynechococcus elongatus.Biochemistry. 2013; 52: 8663-8676Crossref PubMed Scopus (24) Google Scholar, 16Overkamp K.E. Gasper R. Kock K. Herrmann C. Hofmann E. Frankenburg-Dinkel N. Insights into the biosynthesis and assembly of cryptophycean phycobiliproteins.J. Biol. Chem. 2014; 289: 26691-26707Abstract Full Text Full Text PDF PubMed Scopus (27) Google Scholar, 17Shen G. Schluchter W.M. Bryant D.A. Biogenesis of phycobiliproteins. I. CpcS-I and CpcU mutants of the cyanobacterium Synechococcus sp. PCC 7002 define a heterodimeric phycocaynobilin lyase specific for beta -phycocyanin and allophycocyanin subunits.J. Biol. Chem. 2008; 28: 7503-7512Abstract Full Text Full Text PDF Scopus (74) Google Scholar, 18Zhao K.H. Su P. Li J. Tu J.M. Zhou M. Bubenzer C. Scheer H. Chromophore attachment to phycobiliprotein beta-subunits: phycocyanobilin:cystein-beta84 phycobiliprotein lyase activity of CpeS-like protein from Anabaena sp. PCC7120.J. Biol. Chem. 2006; 281: 8573-8581Abstract Full Text Full Text PDF PubMed Scopus (63) Google Scholar)) and CpcT (PDB: 4O4O; (19Gasper R. Schwach J. Hartmann J. Holtkamp A. Weithaus J. Reidel N. Hofmann E. Frankenberg-Dinkel N. Distinct features of cyanophage-encoded T-type phycobiliprotein lyase ΦCpeT: the role of auxillary metabolic genes.J. Biol. Chem. 2017; 292: 3089-3098Abstract Full Text Full Text PDF PubMed Scopus (19) Google Scholar, 20Zhou W. Ding W.-L. Zheng X.-L. Dong L.-L. Zhao B. Zhou M. Scheer H. Zhao K.-H. Yang X. Structure and mechanism of the phycobiliprotein lyase CpcT.J. Biol. Chem. 2014; 289: 26677-26689Abstract Full Text Full Text PDF PubMed Scopus (26) Google Scholar)) lyase families show that they adopt a similar antiparallel beta-barrel structure. CpcS-type lyases are hypothesized to have evolved first because they recognize the central C82-equivalent position present in α and β subunits of allophycocyanin, β-phycocyanin, and β-PE (4Schluchter W.M. Shen G. Alvey R.M. Biswas A. Saunee N.A. Williams S.R. Miller C.A. Bryant D.A. Phycobiliprotein biosynthesis in cyanobacteria: structure and function of enzymes involved in post-translational modification.Adv. Exp. Med. Biol. 2010; 675: 211-228Crossref PubMed Scopus (56) Google Scholar, 10Saunée N.A. Williams S.R. Bryant D.A. Schluchter W.M. Biogenesis of phycobiliproteins. II. CpcS-I and CpcU comprise the heterodimeric bilin lyase that attaches phycocyanobilin to Cys-82 of beta -phycocyanin and Cys-81 of allophycocyanin subunits in Synechococcus sp. PCC 7002.J. Biol. Chem. 2008; 283: 7513-7522Abstract Full Text Full Text PDF PubMed Scopus (56) Google Scholar, 11Shen G. Saunee N.A. Williams S.R. Gallo E.F. Schluchter W.M. Bryant D.A. Identification and characterization of a new class of bilin lyase: the cpcT gene encodes a bilin lyase responsible for attachment of phycocyanobilin to Cys-153 on the beta subunit of phycocyanin in Synechococcus sp. PCC 7002.J. Biol. Chem. 2006; 281: 17768-17778Abstract Full Text Full Text PDF PubMed Scopus (80) Google Scholar, 15Kronfel C.M. Kuzin A.P. Forouhar F. Biswas A. Su M. Lew S. Seetharaman J. Xiao R. Everett J.K. Ma L.-C. Acton T.B. Montelione G.T. Hunt J.F. Paul C.E. Dragomani T.M. et al.Structural and biochemical characterization of the bilin lyase CpcS from Thermosynechococcus elongatus.Biochemistry. 2013; 52: 8663-8676Crossref PubMed Scopus (24) Google Scholar, 19Gasper R. Schwach J. Hartmann J. Holtkamp A. Weithaus J. Reidel N. Hofmann E. Frankenberg-Dinkel N. Distinct features of cyanophage-encoded T-type phycobiliprotein lyase ΦCpeT: the role of auxillary metabolic genes.J. Biol. Chem. 2017; 292: 3089-3098Abstract Full Text Full Text PDF PubMed Scopus (19) Google Scholar, 20Zhou W. Ding W.-L. Zheng X.-L. Dong L.-L. Zhao B. Zhou M. Scheer H. Zhao K.-H. Yang X. Structure and mechanism of the phycobiliprotein lyase CpcT.J. Biol. Chem. 2014; 289: 26677-26689Abstract Full Text Full Text PDF PubMed Scopus (26) Google Scholar, 21Biswas A. Vasquez Y.M. Dragomani T.M. Kronfel M.L. Williams S.R. Alvey R.M. Bryant D.A. Schluchter W.M. Biosynthesis of cyanobacterial phycobiliproteins in Escherichia coli: chromophorylation efficiency and specificity of all bilin lyases from Synechococcus sp. strain PCC 7002.Appl. Environ. Microbiol. 2010; 76: 2729-2739Crossref PubMed Scopus (55) Google Scholar, 22Scheer H. Zhao K. Biliprotein maturation: the chromophore attachment.Mol. Microbiol. 2008; 68: 263-276Crossref PubMed Scopus (138) Google Scholar). Unrelated to the other clans, the CpcE/F lyase clan members display a high specificity for a single bilin and a single binding site on a particular PBP (PDB 5N3U; (13Fairchild C.D. Zhao J. Zhou J. Colson S.E. Bryant D.A. Glazer A.N. Phycocyanin α subunit phycocyanobilin lyase.Proc. Natl. Acad. Sci. U. S. A. 1992; 89: 7017-7021Crossref PubMed Scopus (116) Google Scholar, 14Fairchild C.D. Glazer A.N. Oligomeric structure, enzyme kinetics, and substrate specificity of the phycocyanin alpha subunit phycocyanobilin lyase.J. Biol. Chem. 1994; 269: 8686-8694Abstract Full Text PDF PubMed Google Scholar, 23Zhou J. Gasparich G.E. Stirewalt V.L. de Lorimier R. Bryant D.A. The cpcE and cpcF genes of Synechococcus sp. PCC 7002: construction and phenotypic characterization of interposon mutants.J. Biol. Chem. 1992; 267: 16138-16145Abstract Full Text PDF PubMed Google Scholar, 24Swanson R.V. Zhou J. Leary J.A. Williams T. de Lorimier R. Bryant D.A. Glazer A.N. Characterization of phycocyanin produced by cpcE and cpcF mutants and identification of an intergenic suppressor of the defect in bilin attachment.J. Biol. Chem. 1992; 267: 16146-16154Abstract Full Text PDF PubMed Google Scholar)). These lyases contain five to six HEAT-repeat motifs (thought to facilitate protein–protein interactions) coupled with Armadillo repeats (25Kozo M. Kazuaki N. Masato N. Identification of a novel prokaryotic HEAT-repeats-containing protein which interacts with a cyanobacterial IscA homolog.FEBS Lett. 2002; 519: 123-127Crossref PubMed Scopus (36) Google Scholar, 26Andrade M.A. Petosa C. O'Donoghue S.I. Müller C.W. Bork P. Comparison of ARM and HEAT protein repeats.J. Mol. Biol. 2001; 309: 1-18Crossref PubMed Scopus (396) Google Scholar, 27Marcotrigiano J. Lomakin I.B. Sonenberg N. Pestova T.V. Hellen C.U. Burley S.K. A conserved HEAT domain within eIF4G directs assembly of the translation initiation machinery.Mol. Cell. 2001; 7: 193-203Abstract Full Text Full Text PDF PubMed Scopus (166) Google Scholar, 28Takano H. Gusella J. The predominantly HEAT-like motif structure of huntingtin and its association and coincident nuclear entry with dorsal, an NF-kB/Rel/dorsal family transcription factor.BMC Neurosci. 2002; 14: 15Crossref Scopus (117) Google Scholar) (Fig. S1) (4Schluchter W.M. Shen G. Alvey R.M. Biswas A. Saunee N.A. Williams S.R. Miller C.A. Bryant D.A. Phycobiliprotein biosynthesis in cyanobacteria: structure and function of enzymes involved in post-translational modification.Adv. Exp. Med. Biol. 2010; 675: 211-228Crossref PubMed Scopus (56) Google Scholar, 22Scheer H. Zhao K. Biliprotein maturation: the chromophore attachment.Mol. Microbiol. 2008; 68: 263-276Crossref PubMed Scopus (138) Google Scholar, 29Zhao C. Hoppner A. Xu Q.-Z. Gartner W. Scheer H. Zhou M. Zhao K.-H. Structures and enzymatic mechanisms of phycobiliprotein lyases CpcE/F and PecE/F.Proc. Natl. Acad. Sci. U. S. A. 2017; 114: 13170-13175Crossref PubMed Scopus (26) Google Scholar). This CpcE/F group also includes enzymes that have both bilin isomerase and ligase activity (lyase isomerases), proteins with chaperone-like functions, and proteins with the capability to remove bilins (13Fairchild C.D. Zhao J. Zhou J. Colson S.E. Bryant D.A. Glazer A.N. Phycocyanin α subunit phycocyanobilin lyase.Proc. Natl. Acad. Sci. U. S. A. 1992; 89: 7017-7021Crossref PubMed Scopus (116) Google Scholar, 14Fairchild C.D. Glazer A.N. Oligomeric structure, enzyme kinetics, and substrate specificity of the phycocyanin alpha subunit phycocyanobilin lyase.J. Biol. Chem. 1994; 269: 8686-8694Abstract Full Text PDF PubMed Google Scholar, 30Biswas A. Boutaghou M.N. Alvey R.M. Kronfel C.M. Cole R.B. Bryant D.A. Schluchter W.M. Characterization of the activities of the CpeY, CpeZ, and CpeS bilin lyases in phycoerythrin biosynthesis in Fremyella diplosiphon strain UTEX 481.J. Biol. Chem. 2011; 286: 35509-35521Abstract Full Text Full Text PDF PubMed Scopus (30) Google Scholar, 31Shukla A. Biswas A. Blot N. Partensky F. Karty J.A. Hammad L.A. Garczarek L. Gutu A. Schluchter W.M. Kehoe D.M. Phycoerythrin-specific biln lyase-isomerase controls blue-green chromatic acclimation in marine Synechococcus.Proc. Natl. Acad. Sci. U. S. A. 2012; 109: 20136-20141Crossref PubMed Scopus (57) Google Scholar, 32Zhao K.H. Wu D. Zhou M. Zhang L. Amino acid residues associated with enzymatic activities of the isomerizing phycoviolobilin-lyase PecE/F.Biochemistry. 2005; 44: 8126-8137Crossref PubMed Scopus (28) Google Scholar, 33Levi M. Sendersky E. Schwarz R. Decomposition of cyanobacterial light harvesting complexes:NblA-dependent role of the bilin lyase homolog NblB.Plant J. 2018; 94: 813-821Crossref PubMed Scopus (12) Google Scholar, 34Kronfel C.M. Biswas A. Frick J.P. Gutu A. Blensdorf T. Karty J.A. Kehoe D.M. Schluchter W.M. The roles of the chaperone-like protein CpeZ and the phycoerythrobilin lyase CpeY in phycoerythrin biogenesis.Biochim. Biophys. Acta Bioenerg. 2019; 1860: 249-561Crossref Scopus (7) Google Scholar). To date, the crystal structure of only one CpcE/F-type lyase has been solved and was found to adopt an alpha helical solenoid shape (29Zhao C. Hoppner A. Xu Q.-Z. Gartner W. Scheer H. Zhou M. Zhao K.-H. Structures and enzymatic mechanisms of phycobiliprotein lyases CpcE/F and PecE/F.Proc. Natl. Acad. Sci. U. S. A. 2017; 114: 13170-13175Crossref PubMed Scopus (26) Google Scholar). The marine Synechococcus sp. strain RS9916 possesses the ability to alter the ratio of the blue-light-absorbing chromophore phycourobilin (PUB) [absorbance maximum (λmax) ∼495 nm] and the green-light-absorbing chromophore phycoerythrobilin (PEB) (λmax ∼545 nm) on the distal portion of the PBS rods, a phenomenon known as type IV chromatic acclimation (CA4) (3Sanfilippo J.E. Garczarek L. Partensky F. Kehoe D.M. Chromatic acclimation in cyanobacteria: a diverse and widespread process for optimizing photosynthesis.Ann. Rev. Microbiol. 2019; 73: 407-433Crossref PubMed Scopus (46) Google Scholar, 6Everroad C. Six C. Partensky F. Thomas J.-C. Holtzendorff J. Wood A.M. Biochemical bases of type IV chromatic adaptation in marine Synechococcus spp.J. Bacteriol. 2006; 188: 3345-3356Crossref PubMed Scopus (91) Google Scholar, 35Humily F. Partensky F. Six C. Farrant G.K. Ratin M. Marie D. Farczarek L. A gene island with two possible confirurations is involved in chromatic acclimation in marine Synechococcus.PLoS One. 2013; 8e84459Crossref PubMed Scopus (39) Google Scholar, 36Kehoe D.M. Chromatic adaptation and the evolution of light color sensing in cyanobacteria.Proc. Natl. Acad. Sci. U. S. A. 2010; 107: 9029-9030Crossref PubMed Scopus (65) Google Scholar, 37Palenik B. Chromatic adaptation in marine Synechococcus strains.Appl. Environ. Microbiol. 2001; 67: 991-994Crossref PubMed Scopus (164) Google Scholar, 38Sanfilippo J.E. Nguyen A.A. Garczarek L. Karty J.A. Pokhrel S. Strnat J.A. Partensky F. Schluchter W.M. Kehoe D.M. Interplay between differentially expressed enzymes contribures to light color acclimation in marine Synechococcus.Proc. Natl. Acad. Sci. U. S. A. 2019; 116: 6457-6462Crossref PubMed Scopus (21) Google Scholar, 39Sanfilippo J.E. Nguyen A.A. Karty J.A. Shukla A. Schluchter W.M. Garczarek L. Partensky F. Kehoe D.M. Self-regulating genomic island encoding tandem regulators confers chromatic acclimation to marine Synechococcus.Proc. Natl. Acad. Sci. U. S. A. 2016; 113: 6077-6082Crossref PubMed Scopus (29) Google Scholar). During CA4, the PUB-to-PEB ratio (PUB:PEB) is adjusted to be higher in blue light and lower in green light in order to optimize light capture in changing light color environments (3Sanfilippo J.E. Garczarek L. Partensky F. Kehoe D.M. Chromatic acclimation in cyanobacteria: a diverse and widespread process for optimizing photosynthesis.Ann. Rev. Microbiol. 2019; 73: 407-433Crossref PubMed Scopus (46) Google Scholar, 31Shukla A. Biswas A. Blot N. Partensky F. Karty J.A. Hammad L.A. Garczarek L. Gutu A. Schluchter W.M. Kehoe D.M. Phycoerythrin-specific biln lyase-isomerase controls blue-green chromatic acclimation in marine Synechococcus.Proc. Natl. Acad. Sci. U. S. A. 2012; 109: 20136-20141Crossref PubMed Scopus (57) Google Scholar, 35Humily F. Partensky F. Six C. Farrant G.K. Ratin M. Marie D. Farczarek L. A gene island with two possible confirurations is involved in chromatic acclimation in marine Synechococcus.PLoS One. 2013; 8e84459Crossref PubMed Scopus (39) Google Scholar, 36Kehoe D.M. Chromatic adaptation and the evolution of light color sensing in cyanobacteria.Proc. Natl. Acad. Sci. U. S. A. 2010; 107: 9029-9030Crossref PubMed Scopus (65) Google Scholar, 39Sanfilippo J.E. Nguyen A.A. Karty J.A. Shukla A. Schluchter W.M. Garczarek L. Partensky F. Kehoe D.M. Self-regulating genomic island encoding tandem regulators confers chromatic acclimation to marine Synechococcus.Proc. Natl. Acad. Sci. U. S. A. 2016; 113: 6077-6082Crossref PubMed Scopus (29) Google Scholar, 40Grebert T. Dore H. Partensky F. Farrant G.K. Boss E.S. Picheral M. Guidi L. Pesant S. Scanlan D.J. Wincker P. Acinas S.G. Kehoe D.M. Garczarek L. Light color acclimation is a key process in the global ocean distribution of Synechococus cyanobacteria.Proc. Natl. Acad. Sci. U. S. A. 2018; 115: E2010-E2019Crossref PubMed Scopus (60) Google Scholar). All CA4 strains contain one of the two genomic island configurations, CA4-A or CA4-B, each encoding transcritional activators and a lyase or a lyase isomerase (36Kehoe D.M. Chromatic adaptation and the evolution of light color sensing in cyanobacteria.Proc. Natl. Acad. Sci. U. S. A. 2010; 107: 9029-9030Crossref PubMed Scopus (65) Google Scholar). Although PEB is readily produced in cyanobacteria as a free precursor molecule (41Frankenberg N. Mukougawa K.K. Lagarias J.C. Functional genomic analysis of the HY2 family of ferredoxin-dependent bilin reductases from oxygenic photosynthetic organisms.Plant Cell. 2001; 13: 965-978Crossref PubMed Scopus (193) Google Scholar), the bilin PUB is produced through the activity of specialized bilin lyase isomerases that attach PEB while simultaneously isomerizing it to PUB (Fig. 2) (31Shukla A. Biswas A. Blot N. Partensky F. Karty J.A. Hammad L.A. Garczarek L. Gutu A. Schluchter W.M. Kehoe D.M. Phycoerythrin-specific biln lyase-isomerase controls blue-green chromatic acclimation in marine Synechococcus.Proc. Natl. Acad. Sci. U. S. A. 2012; 109: 20136-20141Crossref PubMed Scopus (57) Google Scholar, 42Blot N. Wu X.J. Thomas J.C. Zhang J. Garczarek L. Bohm S. Tu J.M. Zhou M. Ploscher M. Eichacker L. Partensky F. Scheer H. Zhao K.H. Phycourobilin in trichromatic phycocyanin from oceanic cyanobacteria is formed post-translationally by a phycoerythrobilin lyase-isomerase.J. Biol. Chem. 2009; 284: 9290-9298Abstract Full Text Full Text PDF PubMed Scopus (70) Google Scholar). Increased PUB content in PBS allows these organisms to better absorb the blue light available in deeper water (43Mahmoud R.M. Sanfilippo J.E. Nguyen A.A. Strnat J.A. Partensky F. Garczarek L. El-Kassem N.A. Kehoe D.M. Schluchter W.M. Adaptation to blue light in marine Synechoccous requires MpeU, an enzyme with similarity to phycoerythrobilin lyase isomerases.Front. Microbiol. 2017; 8: 243Crossref PubMed Scopus (19) Google Scholar). In RS9916, there are five possible sites for bilin attachment on PEI, two on the α-subunit (CpeA) and three on the β-subunit (CpeB), and six possible sites on PEII, three each on the α-subunit (MpeA) and β-subunit (MpeB) (31Shukla A. Biswas A. Blot N. Partensky F. Karty J.A. Hammad L.A. Garczarek L. Gutu A. Schluchter W.M. Kehoe D.M. Phycoerythrin-specific biln lyase-isomerase controls blue-green chromatic acclimation in marine Synechococcus.Proc. Natl. Acad. Sci. U. S. A. 2012; 109: 20136-20141Crossref PubMed Scopus (57) Google Scholar). It is hypothesized that a bilin lyase is responsible for ligation of a given bilin at each individual site. Thus far, only four PE lyases (all members of the CpcE/CpcF clan) have been characterized for RS9916 in the literature (31Shukla A. Biswas A. Blot N. Partensky F. Karty J.A. Hammad L.A. Garczarek L. Gutu A. Schluchter W.M. Kehoe D.M. Phycoerythrin-specific biln lyase-isomerase controls blue-green chromatic acclimation in marine Synechococcus.Proc. Natl. Acad. Sci. U. S. A. 2012; 109: 20136-20141Crossref PubMed Scopus (57) Google Scholar, 38Sanfilippo J.E. Nguyen A.A. Garczarek L. Karty J.A. Pokhrel S. Strnat J.A. Partensky F. Schluchter W.M. Kehoe D.M. Interplay between differentially expressed enzymes contribures to light color acclimation in marine Synechococcus.Proc. Natl. Acad. Sci. U. S. A. 2019; 116: 6457-6462Crossref PubMed Scopus (21) Google Scholar, 43Mahmoud R.M. Sanfilippo J.E. Nguyen A.A. Strnat J.A. Partensky F. Garczarek L. El-Kassem N.A. Kehoe D.M. Schluchter W.M. Adaptation to blue light in marine Synechoccous requires MpeU, an enzyme with similarity to phycoerythrobilin lyase isomerases.Front. Microbiol. 2017; 8: 243Crossref PubMed Scopus (19) Google Scholar, 44Carrigee L. Mahmoud R.M. Sanfilippo J.E. Frick J.P. Strnat J.A. Karty J.A. Chen B. Kehoe D.M. Schluchter W.M. CpeY is a phycoerythrobilin lyase for cysteine 82 of the phycoerythrin I α-subunit in marine Synechococcus.Biochim. Biophys. Acta Bioenerg. 2020; 1861: 148215Crossref PubMed Scopus (3) Google Scholar). During CA4, MpeY (PEB lyase) and MpeZ (PUB lyase isomerase) chromophorylate the C83 position of MpeA in green or blue light, respectively (31Shukla A. Biswas A. Blot N. Partensky F. Karty J.A. Hammad L.A. Garczarek L. Gutu A. Schluchter W.M. Kehoe D.M. Phycoerythrin-specific biln lyase-isomerase controls blue-green chromatic acclimation in marine Synechococcus.Proc. Natl. Acad. Sci. U. S. A. 2012; 109: 20136-20141Crossref PubMed Scopus (57) Google Scholar, 38Sanfilippo J.E. Nguyen A.A. Garczarek L. Karty J.A. Pokhrel S. Strnat J.A. Partensky F. Schluchter W.M. Kehoe D.M. Interplay between differentially expressed enzymes contribures to light color acclimation in marine Synechococcus.Proc. Natl. Acad. Sci. U. S. A. 2019; 116: 6457-6462Crossref PubMed Scopus (21) Google Scholar). CpeY adds PEB to the C82 position of CpeA, a site of constitutive attachment, not involved in any of the major CA4 changes that occur (44Carrigee L. Mahmoud R.M. Sanfilippo J.E. Frick J.P. Strnat J.A. Karty J.A. Chen B. Kehoe D.M. Schluchter W.M. CpeY is a phycoerythrobilin lyase for cysteine 82 of the phycoerythrin I α-subunit in marine Synechococcus.Biochim. Biophys. Acta Bioenerg. 2020; 1861: 148215Crossref PubMed Scopus (3) Google Scholar). MpeU is responsible for PUB attachment in BL (43Mahmoud R.M. Sanfilippo J.E. Nguyen A.A. Strnat J.A. Partensky F. Garczarek L. El-Kassem N.A. Kehoe D.M. Schluchter W.M. Adaptation to blue light in marine Synechoccous requires MpeU, an enzyme with similarity to phycoerythrobilin lyase isomerases.Front. Microbiol. 2017; 8: 243Crossref PubMed Scopus (19) Google Scholar, 45Nguyen A. Characterization of Genes Involved in the Biosynthesis of Phycoerythrin I and II in Cyanobacteria. University of New Orleans, 2018Google Scholar); however, more research is needed to fully understand its function and potential role in chromatic acclimation. To date, no lyases for β-PEI or β-PEII have been characterized in RS9916, but some studies on the biosynthesis of CpeB from the freshwater cyanobacterium Fremyella d