Inflammation‐associated factors for predicting in‐hospital mortality in patients with COVID‐19

医学 比例危险模型 内科学 C反应蛋白 单变量分析 多元分析 多元统计 风险因素 回归分析 胃肠病学 炎症 数学 计算机科学 统计 机器学习
作者
Junhong Wang,Rudong Chen,Hongkuan Yang,Lingcheng Zeng,Hao Chen,Yuyang Hou,Wei Hu,Jiasheng Yu,Hua Li
出处
期刊:Journal of Medical Virology [Wiley]
卷期号:93 (5): 2908-2917 被引量:19
标识
DOI:10.1002/jmv.26771
摘要

Abstract The aim is to explore the relation between inflammation‐associated factors and in‐hospital mortality and investigate which factor is an independent predictor of in‐hospital death in patients with coronavirus disease‐2019. This study included patients with coronavirus disease‐2019, who were hospitalized between February 9, 2020, and March 30, 2020. Univariate Cox regression analysis and least absolute shrinkage and selection operator regression (LASSO) were used to select variables. Multivariate Cox regression analysis was applied to identify independent risk factors in coronavirus disease‐2019. A total of 1135 patients were analyzed during the study period. A total of 35 variables were considered to be risk factors after the univariate regression analysis of the clinical characteristics and laboratory parameters ( p < .05), and LASSO regression analysis screened out seven risk factors for further study. The six independent risk factors revealed by multivariate Cox regression were myoglobin (HR, 5.353; 95% CI, 2.633–10.882; p < .001), C‐reactive protein (HR, 2.063; 95% CI, 1.036–4.109; p = .039), neutrophil count (HR, 2.015; 95% CI, 1.154–3.518; p = .014), interleukin 6 (Il‐6; HR, 9.753; 95% CI, 2.952–32.218; p < .001), age (HR, 2.016; 95% CI, 1.077–3.773; p = .028), and international normalized ratio (HR, 2.595; 95% CI, 1.412–4.769; p = .002). Our results suggested that inflammation‐associated factors were significantly associated with in‐hospital mortality in coronavirus disease‐2019 patients. C‐reactive protein, neutrophil count, and interleukin 6 were independent factors for predicting in‐hospital mortality and had a better independent predictive ability. We believe these findings may allow early identification of the patients at high risk for death, and can also assist in better management of these patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甜蜜发带发布了新的文献求助10
1秒前
果子完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助50
3秒前
3秒前
木易发布了新的文献求助10
3秒前
文静元霜完成签到,获得积分10
4秒前
qiarrr发布了新的文献求助10
6秒前
嚯嚯李完成签到,获得积分10
6秒前
田様应助大方冬寒采纳,获得10
7秒前
瀚泛发布了新的文献求助10
8秒前
浮游应助kanaty采纳,获得10
11秒前
大模型应助先字母采纳,获得10
12秒前
NexusExplorer应助肖的花园采纳,获得10
13秒前
野性的小懒虫完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助100
14秒前
16秒前
16秒前
18秒前
19秒前
20秒前
20秒前
一颗盐完成签到,获得积分10
22秒前
22秒前
芯芯今天读文献了吗完成签到,获得积分10
22秒前
NexusExplorer应助dll采纳,获得10
22秒前
23秒前
janice发布了新的文献求助10
24秒前
25秒前
应见惯发布了新的文献求助10
25秒前
26秒前
TTT发布了新的文献求助10
26秒前
JamesPei应助海风采纳,获得10
27秒前
27秒前
1111111发布了新的文献求助10
27秒前
有话好好硕完成签到 ,获得积分10
28秒前
张健发布了新的文献求助10
29秒前
mic发布了新的文献求助10
30秒前
30秒前
丘比特应助Du采纳,获得10
31秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4886348
求助须知:如何正确求助?哪些是违规求助? 4171310
关于积分的说明 12944605
捐赠科研通 3931793
什么是DOI,文献DOI怎么找? 2157251
邀请新用户注册赠送积分活动 1175706
关于科研通互助平台的介绍 1080197