Inflammation‐associated factors for predicting in‐hospital mortality in patients with COVID‐19

医学 比例危险模型 内科学 C反应蛋白 单变量分析 多元分析 多元统计 风险因素 回归分析 胃肠病学 炎症 机器学习 计算机科学 统计 数学
作者
Junhong Wang,Rudong Chen,Hongkuan Yang,Lingcheng Zeng,Hao Chen,Yuyang Hou,Wei Hu,Jiasheng Yu,Hua Li
出处
期刊:Journal of Medical Virology [Wiley]
卷期号:93 (5): 2908-2917 被引量:19
标识
DOI:10.1002/jmv.26771
摘要

Abstract The aim is to explore the relation between inflammation‐associated factors and in‐hospital mortality and investigate which factor is an independent predictor of in‐hospital death in patients with coronavirus disease‐2019. This study included patients with coronavirus disease‐2019, who were hospitalized between February 9, 2020, and March 30, 2020. Univariate Cox regression analysis and least absolute shrinkage and selection operator regression (LASSO) were used to select variables. Multivariate Cox regression analysis was applied to identify independent risk factors in coronavirus disease‐2019. A total of 1135 patients were analyzed during the study period. A total of 35 variables were considered to be risk factors after the univariate regression analysis of the clinical characteristics and laboratory parameters ( p < .05), and LASSO regression analysis screened out seven risk factors for further study. The six independent risk factors revealed by multivariate Cox regression were myoglobin (HR, 5.353; 95% CI, 2.633–10.882; p < .001), C‐reactive protein (HR, 2.063; 95% CI, 1.036–4.109; p = .039), neutrophil count (HR, 2.015; 95% CI, 1.154–3.518; p = .014), interleukin 6 (Il‐6; HR, 9.753; 95% CI, 2.952–32.218; p < .001), age (HR, 2.016; 95% CI, 1.077–3.773; p = .028), and international normalized ratio (HR, 2.595; 95% CI, 1.412–4.769; p = .002). Our results suggested that inflammation‐associated factors were significantly associated with in‐hospital mortality in coronavirus disease‐2019 patients. C‐reactive protein, neutrophil count, and interleukin 6 were independent factors for predicting in‐hospital mortality and had a better independent predictive ability. We believe these findings may allow early identification of the patients at high risk for death, and can also assist in better management of these patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
安静一曲完成签到 ,获得积分10
刚刚
1秒前
完美世界应助嘎嘎顺利采纳,获得10
1秒前
崔靥完成签到,获得积分10
1秒前
2秒前
阿敏关注了科研通微信公众号
2秒前
一只绒可可完成签到,获得积分10
2秒前
CBY完成签到,获得积分10
2秒前
2秒前
QYPANG完成签到,获得积分10
3秒前
子时月完成签到,获得积分10
4秒前
脑洞疼应助xlx采纳,获得10
4秒前
jym完成签到,获得积分10
4秒前
4秒前
田様应助笑点低蜜蜂采纳,获得10
4秒前
今后应助乐观的一一采纳,获得10
5秒前
开朗向真完成签到,获得积分10
5秒前
5秒前
奋斗映寒发布了新的文献求助10
5秒前
梓榆发布了新的文献求助10
5秒前
帅气的沧海完成签到 ,获得积分10
5秒前
6秒前
FashionBoy应助包容的幻梅采纳,获得10
6秒前
6秒前
qaq完成签到,获得积分10
6秒前
6秒前
voyager完成签到,获得积分10
6秒前
勇敢肥猫发布了新的文献求助10
7秒前
YA发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
orixero应助玉yu采纳,获得10
8秒前
9秒前
sansan发布了新的文献求助10
9秒前
劉劉完成签到 ,获得积分10
10秒前
酷波er应助阳光的衫采纳,获得10
10秒前
火星上的菲鹰应助hkh采纳,获得10
10秒前
SciGPT应助Ll采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740