清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Inflammation‐associated factors for predicting in‐hospital mortality in patients with COVID‐19

医学 比例危险模型 内科学 C反应蛋白 单变量分析 多元分析 多元统计 风险因素 回归分析 胃肠病学 炎症 数学 计算机科学 统计 机器学习
作者
Junhong Wang,Rudong Chen,Hongkuan Yang,Lingcheng Zeng,Hao Chen,Yuyang Hou,Wei Hu,Jiasheng Yu,Hua Li
出处
期刊:Journal of Medical Virology [Wiley]
卷期号:93 (5): 2908-2917 被引量:19
标识
DOI:10.1002/jmv.26771
摘要

Abstract The aim is to explore the relation between inflammation‐associated factors and in‐hospital mortality and investigate which factor is an independent predictor of in‐hospital death in patients with coronavirus disease‐2019. This study included patients with coronavirus disease‐2019, who were hospitalized between February 9, 2020, and March 30, 2020. Univariate Cox regression analysis and least absolute shrinkage and selection operator regression (LASSO) were used to select variables. Multivariate Cox regression analysis was applied to identify independent risk factors in coronavirus disease‐2019. A total of 1135 patients were analyzed during the study period. A total of 35 variables were considered to be risk factors after the univariate regression analysis of the clinical characteristics and laboratory parameters ( p < .05), and LASSO regression analysis screened out seven risk factors for further study. The six independent risk factors revealed by multivariate Cox regression were myoglobin (HR, 5.353; 95% CI, 2.633–10.882; p < .001), C‐reactive protein (HR, 2.063; 95% CI, 1.036–4.109; p = .039), neutrophil count (HR, 2.015; 95% CI, 1.154–3.518; p = .014), interleukin 6 (Il‐6; HR, 9.753; 95% CI, 2.952–32.218; p < .001), age (HR, 2.016; 95% CI, 1.077–3.773; p = .028), and international normalized ratio (HR, 2.595; 95% CI, 1.412–4.769; p = .002). Our results suggested that inflammation‐associated factors were significantly associated with in‐hospital mortality in coronavirus disease‐2019 patients. C‐reactive protein, neutrophil count, and interleukin 6 were independent factors for predicting in‐hospital mortality and had a better independent predictive ability. We believe these findings may allow early identification of the patients at high risk for death, and can also assist in better management of these patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
暴躁的鱼完成签到 ,获得积分10
23秒前
tt完成签到,获得积分10
25秒前
cy0824完成签到 ,获得积分10
35秒前
淡然的莫茗完成签到 ,获得积分10
44秒前
忧郁的火车完成签到,获得积分10
2分钟前
不想看文献完成签到 ,获得积分10
2分钟前
zxx完成签到 ,获得积分0
3分钟前
3分钟前
4分钟前
Lliu发布了新的文献求助10
4分钟前
zpli完成签到 ,获得积分10
5分钟前
CipherSage应助科研通管家采纳,获得10
5分钟前
qqq完成签到,获得积分10
5分钟前
5分钟前
1234发布了新的文献求助10
6分钟前
1234完成签到,获得积分20
6分钟前
Lliu完成签到,获得积分10
6分钟前
五木完成签到,获得积分10
6分钟前
在水一方应助稳重的泽洋采纳,获得10
7分钟前
大模型应助科研通管家采纳,获得30
7分钟前
科目三应助Carl采纳,获得10
7分钟前
7分钟前
7分钟前
7分钟前
Carl发布了新的文献求助10
7分钟前
所所应助稳重的泽洋采纳,获得10
9分钟前
meeteryu完成签到,获得积分10
9分钟前
CHEN完成签到 ,获得积分0
10分钟前
10分钟前
10分钟前
稳重的泽洋完成签到,获得积分10
10分钟前
在逃板砖完成签到 ,获得积分10
11分钟前
科研通AI2S应助科研通管家采纳,获得10
11分钟前
Timelapse应助缥缈以珊采纳,获得20
11分钟前
12分钟前
午后狂睡完成签到 ,获得积分10
12分钟前
Jasper应助大哥我猪呢采纳,获得10
12分钟前
12分钟前
12分钟前
12分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565086
求助须知:如何正确求助?哪些是违规求助? 4649803
关于积分的说明 14689300
捐赠科研通 4591729
什么是DOI,文献DOI怎么找? 2519358
邀请新用户注册赠送积分活动 1491917
关于科研通互助平台的介绍 1463056