Inflammation‐associated factors for predicting in‐hospital mortality in patients with COVID‐19

医学 比例危险模型 内科学 C反应蛋白 单变量分析 多元分析 多元统计 风险因素 回归分析 胃肠病学 炎症 数学 计算机科学 统计 机器学习
作者
Junhong Wang,Rudong Chen,Hongkuan Yang,Lingcheng Zeng,Hao Chen,Yuyang Hou,Wei Hu,Jiasheng Yu,Hua Li
出处
期刊:Journal of Medical Virology [Wiley]
卷期号:93 (5): 2908-2917 被引量:19
标识
DOI:10.1002/jmv.26771
摘要

Abstract The aim is to explore the relation between inflammation‐associated factors and in‐hospital mortality and investigate which factor is an independent predictor of in‐hospital death in patients with coronavirus disease‐2019. This study included patients with coronavirus disease‐2019, who were hospitalized between February 9, 2020, and March 30, 2020. Univariate Cox regression analysis and least absolute shrinkage and selection operator regression (LASSO) were used to select variables. Multivariate Cox regression analysis was applied to identify independent risk factors in coronavirus disease‐2019. A total of 1135 patients were analyzed during the study period. A total of 35 variables were considered to be risk factors after the univariate regression analysis of the clinical characteristics and laboratory parameters ( p < .05), and LASSO regression analysis screened out seven risk factors for further study. The six independent risk factors revealed by multivariate Cox regression were myoglobin (HR, 5.353; 95% CI, 2.633–10.882; p < .001), C‐reactive protein (HR, 2.063; 95% CI, 1.036–4.109; p = .039), neutrophil count (HR, 2.015; 95% CI, 1.154–3.518; p = .014), interleukin 6 (Il‐6; HR, 9.753; 95% CI, 2.952–32.218; p < .001), age (HR, 2.016; 95% CI, 1.077–3.773; p = .028), and international normalized ratio (HR, 2.595; 95% CI, 1.412–4.769; p = .002). Our results suggested that inflammation‐associated factors were significantly associated with in‐hospital mortality in coronavirus disease‐2019 patients. C‐reactive protein, neutrophil count, and interleukin 6 were independent factors for predicting in‐hospital mortality and had a better independent predictive ability. We believe these findings may allow early identification of the patients at high risk for death, and can also assist in better management of these patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
vikoel发布了新的文献求助10
1秒前
1秒前
科研通AI2S应助单纯的雅香采纳,获得10
1秒前
suer玉完成签到,获得积分10
2秒前
今后应助lhyzgsy采纳,获得10
3秒前
111发布了新的文献求助10
3秒前
彭于晏应助完美芹采纳,获得10
4秒前
阜睿发布了新的文献求助10
4秒前
科研通AI2S应助看海棠未眠采纳,获得10
4秒前
飞翔的荷兰人完成签到,获得积分10
5秒前
5秒前
追寻紫安发布了新的文献求助10
5秒前
xiubo128完成签到 ,获得积分10
5秒前
yunsww发布了新的文献求助10
5秒前
John完成签到,获得积分10
6秒前
6秒前
852应助111采纳,获得10
6秒前
meimei发布了新的文献求助10
6秒前
6秒前
星辰大海应助谢书南采纳,获得10
8秒前
小刘完成签到,获得积分10
8秒前
大兴西北发布了新的文献求助10
9秒前
10秒前
隐形曼青应助Zpiao采纳,获得10
10秒前
巫幻香完成签到,获得积分10
10秒前
Ava应助vgh采纳,获得10
10秒前
10秒前
z182052237完成签到,获得积分20
11秒前
深情安青应助lilili采纳,获得10
11秒前
芋泥发布了新的文献求助10
12秒前
12秒前
13秒前
14秒前
14秒前
14秒前
dxwy应助巫幻香采纳,获得10
14秒前
wuwuwuwuwuwu完成签到,获得积分10
14秒前
15秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3144560
求助须知:如何正确求助?哪些是违规求助? 2796059
关于积分的说明 7817719
捐赠科研通 2452134
什么是DOI,文献DOI怎么找? 1304892
科研通“疑难数据库(出版商)”最低求助积分说明 627331
版权声明 601432