Inflammation‐associated factors for predicting in‐hospital mortality in patients with COVID‐19

医学 比例危险模型 内科学 C反应蛋白 单变量分析 多元分析 多元统计 风险因素 回归分析 胃肠病学 炎症 数学 计算机科学 统计 机器学习
作者
Junhong Wang,Rudong Chen,Hongkuan Yang,Lingcheng Zeng,Hao Chen,Yuyang Hou,Wei Hu,Jiasheng Yu,Hua Li
出处
期刊:Journal of Medical Virology [Wiley]
卷期号:93 (5): 2908-2917 被引量:19
标识
DOI:10.1002/jmv.26771
摘要

Abstract The aim is to explore the relation between inflammation‐associated factors and in‐hospital mortality and investigate which factor is an independent predictor of in‐hospital death in patients with coronavirus disease‐2019. This study included patients with coronavirus disease‐2019, who were hospitalized between February 9, 2020, and March 30, 2020. Univariate Cox regression analysis and least absolute shrinkage and selection operator regression (LASSO) were used to select variables. Multivariate Cox regression analysis was applied to identify independent risk factors in coronavirus disease‐2019. A total of 1135 patients were analyzed during the study period. A total of 35 variables were considered to be risk factors after the univariate regression analysis of the clinical characteristics and laboratory parameters ( p < .05), and LASSO regression analysis screened out seven risk factors for further study. The six independent risk factors revealed by multivariate Cox regression were myoglobin (HR, 5.353; 95% CI, 2.633–10.882; p < .001), C‐reactive protein (HR, 2.063; 95% CI, 1.036–4.109; p = .039), neutrophil count (HR, 2.015; 95% CI, 1.154–3.518; p = .014), interleukin 6 (Il‐6; HR, 9.753; 95% CI, 2.952–32.218; p < .001), age (HR, 2.016; 95% CI, 1.077–3.773; p = .028), and international normalized ratio (HR, 2.595; 95% CI, 1.412–4.769; p = .002). Our results suggested that inflammation‐associated factors were significantly associated with in‐hospital mortality in coronavirus disease‐2019 patients. C‐reactive protein, neutrophil count, and interleukin 6 were independent factors for predicting in‐hospital mortality and had a better independent predictive ability. We believe these findings may allow early identification of the patients at high risk for death, and can also assist in better management of these patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助Tianping采纳,获得10
刚刚
布丁发布了新的文献求助10
1秒前
部落发布了新的文献求助10
1秒前
Criminology34应助可爱的香岚采纳,获得10
2秒前
堇妤完成签到,获得积分20
2秒前
tum驳回了dew应助
2秒前
JamesPei应助ccm采纳,获得10
3秒前
青年才俊发布了新的文献求助10
3秒前
3秒前
糊涂的万发布了新的文献求助10
3秒前
桐桐应助优秀远侵采纳,获得10
4秒前
王亚平发布了新的文献求助10
4秒前
狮子卷卷完成签到,获得积分0
4秒前
甜兰儿完成签到,获得积分10
4秒前
怡然的月完成签到,获得积分10
5秒前
安静的难破完成签到,获得积分10
5秒前
6秒前
6秒前
javascript发布了新的文献求助10
6秒前
金光大元宝完成签到,获得积分10
7秒前
烟花应助niuya采纳,获得10
8秒前
小马甲应助自然含羞草采纳,获得10
8秒前
SciGPT应助11采纳,获得10
9秒前
与我常在完成签到,获得积分20
9秒前
糊涂的万完成签到,获得积分10
9秒前
10秒前
11秒前
丘比特应助鸢尾采纳,获得10
11秒前
晨曦完成签到,获得积分10
11秒前
cara完成签到,获得积分10
12秒前
yh发布了新的文献求助10
12秒前
Di喵喵完成签到,获得积分10
13秒前
monoklatt发布了新的文献求助10
13秒前
13秒前
深情安青应助Yue采纳,获得10
14秒前
14秒前
无辜凤凰发布了新的文献求助10
15秒前
YaoHui发布了新的文献求助10
15秒前
华仔应助大大怪采纳,获得10
15秒前
Jiali完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5259760
求助须知:如何正确求助?哪些是违规求助? 4421264
关于积分的说明 13762582
捐赠科研通 4295161
什么是DOI,文献DOI怎么找? 2356757
邀请新用户注册赠送积分活动 1353139
关于科研通互助平台的介绍 1314315