Self-Assembly-Driven Nanomechanics in Porous Covalent Organic Framework Thin Films

纳米力学 多孔性 薄膜 纳米技术 共价键 结晶度 自组装 多孔介质 化学 复合材料 材料科学 超分子化学 原子力显微镜 结晶学 晶体结构 有机化学
作者
Kaushik Dey,Surojit Bhunia,Himadri Sekhar Sasmal,C. Malla Reddy,Rahul Banerjee
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:143 (2): 955-963 被引量:101
标识
DOI:10.1021/jacs.0c11122
摘要

Nanomechanics signifies a key tool to interpret the macroscopic mechanical properties of a porous solid in the context of molecular-level structure. However, establishing such a correlation has proved to be significantly challenging in porous covalent organic frameworks (COFs). Structural defects or packing faults within the porous matrix, poor understanding of the crystalline assembly, and surface roughness are critical factors that contribute to this difficulty. In this regard, we have fabricated two distinct types of COF thin films by controlling the internal order and self-assembly of the same building blocks. Interestingly, the defect density and the nature of supramolecular interactions played a significant role in determining the corresponding thin films' stress–strain behavior. Thin films assembled from nanofibers (∼1–2 μm) underwent large deformation on the application of small external stress (Tp–Azofiber film: E ≈ 1.46 GPa; H ≈ 23 MPa) due to weak internal forces. On the other hand, thin films threaded with nanospheres (∼600 nm) exhibit a much stiffer and harder mechanical response (Tp–Azosphere film: E ≈ 15.3 GPa; H ≈ 66 MPa) due to strong covalent interactions and higher crystallinity. These porous COF films further exhibited a significant elastic recovery (∼80%), ideal for applications dealing with shock-resistant materials. This work provides in-depth insight into the fabrication of industrially relevant crystalline porous thin films and membranes by addressing the previously unanswered questions about the mechanical constraints in COFs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一年发3篇JACS完成签到,获得积分10
刚刚
刚刚
SciGPT应助木子采纳,获得10
1秒前
66完成签到,获得积分10
1秒前
赵鹏翔发布了新的文献求助10
1秒前
带象完成签到,获得积分10
1秒前
才露尖尖角完成签到,获得积分10
2秒前
幽默服饰完成签到 ,获得积分10
2秒前
芝士就是力量完成签到,获得积分10
2秒前
xr完成签到 ,获得积分10
2秒前
YaoX发布了新的文献求助10
3秒前
打打应助核桃采纳,获得10
3秒前
Porifera完成签到,获得积分10
3秒前
3秒前
笋蒸鱼发布了新的文献求助10
3秒前
余云开发布了新的文献求助50
4秒前
顾矜应助板凳采纳,获得10
4秒前
带象发布了新的文献求助20
5秒前
6秒前
6秒前
阿曼尼完成签到 ,获得积分10
6秒前
英俊的铭应助LILING采纳,获得10
6秒前
iRan完成签到,获得积分10
7秒前
落忆完成签到 ,获得积分10
7秒前
蜡笔完成签到,获得积分10
7秒前
趁微风不躁完成签到,获得积分10
7秒前
通~发布了新的文献求助10
8秒前
8秒前
张磊完成签到,获得积分10
8秒前
冷艳的太君完成签到,获得积分10
9秒前
9秒前
科目三应助wwwww采纳,获得10
10秒前
10秒前
10秒前
11秒前
CH完成签到 ,获得积分10
11秒前
xiuxiu_27发布了新的文献求助10
12秒前
April发布了新的文献求助10
12秒前
打打应助核桃采纳,获得10
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740