Self-Assembly-Driven Nanomechanics in Porous Covalent Organic Framework Thin Films

纳米力学 多孔性 薄膜 纳米技术 共价键 结晶度 自组装 多孔介质 化学 复合材料 材料科学 超分子化学 原子力显微镜 结晶学 晶体结构 有机化学
作者
Kaushik Dey,Surojit Bhunia,Himadri Sekhar Sasmal,C. Malla Reddy,Rahul Banerjee
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:143 (2): 955-963 被引量:101
标识
DOI:10.1021/jacs.0c11122
摘要

Nanomechanics signifies a key tool to interpret the macroscopic mechanical properties of a porous solid in the context of molecular-level structure. However, establishing such a correlation has proved to be significantly challenging in porous covalent organic frameworks (COFs). Structural defects or packing faults within the porous matrix, poor understanding of the crystalline assembly, and surface roughness are critical factors that contribute to this difficulty. In this regard, we have fabricated two distinct types of COF thin films by controlling the internal order and self-assembly of the same building blocks. Interestingly, the defect density and the nature of supramolecular interactions played a significant role in determining the corresponding thin films' stress–strain behavior. Thin films assembled from nanofibers (∼1–2 μm) underwent large deformation on the application of small external stress (Tp–Azofiber film: E ≈ 1.46 GPa; H ≈ 23 MPa) due to weak internal forces. On the other hand, thin films threaded with nanospheres (∼600 nm) exhibit a much stiffer and harder mechanical response (Tp–Azosphere film: E ≈ 15.3 GPa; H ≈ 66 MPa) due to strong covalent interactions and higher crystallinity. These porous COF films further exhibited a significant elastic recovery (∼80%), ideal for applications dealing with shock-resistant materials. This work provides in-depth insight into the fabrication of industrially relevant crystalline porous thin films and membranes by addressing the previously unanswered questions about the mechanical constraints in COFs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aoao嘉完成签到,获得积分10
刚刚
深情安青应助77采纳,获得10
刚刚
Billy应助Cong采纳,获得30
1秒前
共享精神应助健壮雨兰采纳,获得10
1秒前
解泽星完成签到,获得积分10
2秒前
RUINNNO完成签到 ,获得积分10
2秒前
COCO发布了新的文献求助10
3秒前
5秒前
liffchao应助chen采纳,获得10
5秒前
iVANPENNY应助奶昔采纳,获得10
6秒前
6秒前
xubee完成签到,获得积分10
7秒前
简单果汁完成签到,获得积分10
7秒前
霸气紫文应助木可南采纳,获得10
8秒前
cocolu应助dddy采纳,获得10
8秒前
10秒前
11秒前
Singularity应助超级忆雪采纳,获得10
12秒前
体贴花卷发布了新的文献求助10
12秒前
万能图书馆应助朗源Wu采纳,获得10
13秒前
14秒前
星星发布了新的文献求助10
14秒前
huangdy发布了新的文献求助10
15秒前
zj发布了新的文献求助10
15秒前
顺毕完成签到,获得积分10
16秒前
松鼠叶发布了新的文献求助50
17秒前
我是微风完成签到,获得积分10
17秒前
俏皮妙海关注了科研通微信公众号
17秒前
18秒前
Owen应助yier采纳,获得10
18秒前
今后应助典雅的俊驰采纳,获得10
19秒前
19秒前
20秒前
FashionBoy应助刻苦的黑米采纳,获得10
20秒前
等等完成签到,获得积分10
21秒前
科研通AI2S应助喜悦酸奶采纳,获得10
21秒前
22秒前
jimmy发布了新的文献求助10
22秒前
Owen应助小杨同学采纳,获得10
22秒前
柯不正完成签到,获得积分10
22秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312474
求助须知:如何正确求助?哪些是违规求助? 2945127
关于积分的说明 8523062
捐赠科研通 2620847
什么是DOI,文献DOI怎么找? 1433151
科研通“疑难数据库(出版商)”最低求助积分说明 664881
邀请新用户注册赠送积分活动 650255