Establishment of Best Practices for Evidence for Prediction

预测建模 神经影像学 接收机工作特性 计算机科学 回归 回归分析 统计 相关性 相关性(法律) 心理学 样本量测定 人工智能 数据挖掘 线性回归 机器学习 数学 精神科 政治学 几何学 法学
作者
Russell A. Poldrack,Grace Huckins,Gaël Varoquaux
出处
期刊:JAMA Psychiatry [American Medical Association]
卷期号:77 (5): 534-534 被引量:442
标识
DOI:10.1001/jamapsychiatry.2019.3671
摘要

Importance

Great interest exists in identifying methods to predict neuropsychiatric disease states and treatment outcomes from high-dimensional data, including neuroimaging and genomics data. The goal of this review is to highlight several potential problems that can arise in studies that aim to establish prediction.

Observations

A number of neuroimaging studies have claimed to establish prediction while establishing only correlation, which is an inappropriate use of the statistical meaning of prediction. Statistical associations do not necessarily imply the ability to make predictions in a generalized manner; establishing evidence for prediction thus requires testing of the model on data separate from those used to estimate the model’s parameters. This article discusses various measures of predictive performance and the limitations of some commonly used measures, with a focus on the importance of using multiple measures when assessing performance. For classification, the area under the receiver operating characteristic curve is an appropriate measure; for regression analysis, correlation should be avoided, and median absolute error is preferred.

Conclusions and Relevance

To ensure accurate estimates of predictive validity, the recommended best practices for predictive modeling include the following: (1) in-sample model fit indices should not be reported as evidence for predictive accuracy, (2) the cross-validation procedure should encompass all operations applied to the data, (3) prediction analyses should not be performed with samples smaller than several hundred observations, (4) multiple measures of prediction accuracy should be examined and reported, (5) the coefficient of determination should be computed using the sums of squares formulation and not the correlation coefficient, and (6) k-fold cross-validation rather than leave-one-out cross-validation should be used.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
好好学习发布了新的文献求助20
1秒前
1秒前
奇凌发布了新的文献求助10
1秒前
1秒前
冯11发布了新的文献求助10
2秒前
科研通AI2S应助yagye56采纳,获得10
2秒前
wmmm发布了新的文献求助10
2秒前
77发布了新的文献求助10
3秒前
迅速的鬼神完成签到,获得积分10
3秒前
开心的半仙完成签到 ,获得积分10
4秒前
百川发布了新的文献求助30
4秒前
jialiu完成签到,获得积分10
4秒前
仁爱的老黑完成签到,获得积分10
4秒前
4秒前
SCINEXUS应助兰心哲采纳,获得40
5秒前
HEIKU应助purejun采纳,获得10
6秒前
6秒前
aldehyde应助开心小肖乐采纳,获得10
6秒前
6秒前
顾矜应助lingling采纳,获得30
6秒前
JamesPei应助迷人芙蓉采纳,获得10
6秒前
奇凌完成签到,获得积分10
6秒前
科研通AI2S应助路过的骑士采纳,获得10
7秒前
CALM完成签到,获得积分10
8秒前
田様应助绿兰采纳,获得10
8秒前
8秒前
8秒前
云月林生发布了新的文献求助10
10秒前
Jasper应助学术laji采纳,获得10
11秒前
11秒前
11秒前
ArthurWaley发布了新的文献求助10
12秒前
薰硝壤应助斯文的大白采纳,获得10
13秒前
13秒前
13秒前
眼睛大鹭洋完成签到,获得积分10
13秒前
14秒前
百川完成签到,获得积分10
14秒前
14秒前
huimin发布了新的文献求助10
14秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149056
求助须知:如何正确求助?哪些是违规求助? 2800110
关于积分的说明 7838594
捐赠科研通 2457644
什么是DOI,文献DOI怎么找? 1307938
科研通“疑难数据库(出版商)”最低求助积分说明 628362
版权声明 601685