Establishment of Best Practices for Evidence for Prediction

心理学 梅德林 医学 政治学 法学
作者
Russell A. Poldrack,Grace Huckins,Gaël Varoquaux
出处
期刊:JAMA Psychiatry [American Medical Association]
卷期号:77 (5): 534-534 被引量:567
标识
DOI:10.1001/jamapsychiatry.2019.3671
摘要

Importance

Great interest exists in identifying methods to predict neuropsychiatric disease states and treatment outcomes from high-dimensional data, including neuroimaging and genomics data. The goal of this review is to highlight several potential problems that can arise in studies that aim to establish prediction.

Observations

A number of neuroimaging studies have claimed to establish prediction while establishing only correlation, which is an inappropriate use of the statistical meaning of prediction. Statistical associations do not necessarily imply the ability to make predictions in a generalized manner; establishing evidence for prediction thus requires testing of the model on data separate from those used to estimate the model's parameters. This article discusses various measures of predictive performance and the limitations of some commonly used measures, with a focus on the importance of using multiple measures when assessing performance. For classification, the area under the receiver operating characteristic curve is an appropriate measure; for regression analysis, correlation should be avoided, and median absolute error is preferred.

Conclusions and Relevance

To ensure accurate estimates of predictive validity, the recommended best practices for predictive modeling include the following: (1) in-sample model fit indices should not be reported as evidence for predictive accuracy, (2) the cross-validation procedure should encompass all operations applied to the data, (3) prediction analyses should not be performed with samples smaller than several hundred observations, (4) multiple measures of prediction accuracy should be examined and reported, (5) the coefficient of determination should be computed using the sums of squares formulation and not the correlation coefficient, and (6) k-fold cross-validation rather than leave-one-out cross-validation should be used.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
彩色紫南发布了新的文献求助10
2秒前
Ava应助王大可采纳,获得10
2秒前
55215发布了新的文献求助20
3秒前
hyl发布了新的文献求助10
3秒前
丘比特应助麦可采纳,获得10
4秒前
听话的醉冬完成签到 ,获得积分10
4秒前
lalala发布了新的文献求助30
4秒前
量子星尘发布了新的文献求助10
5秒前
TTT发布了新的文献求助10
5秒前
6秒前
狂野凌旋完成签到 ,获得积分20
6秒前
顾矜应助任性踏歌采纳,获得200
8秒前
9秒前
9秒前
清爽匪发布了新的文献求助10
10秒前
小慧儿发布了新的文献求助10
12秒前
上进的pencil应助乘风文月采纳,获得10
13秒前
我想玩粘土完成签到,获得积分10
13秒前
14秒前
小马甲应助youlingduxiu采纳,获得10
15秒前
15秒前
研友_shuang发布了新的文献求助10
15秒前
16秒前
PK完成签到,获得积分10
16秒前
zhaowenxian发布了新的文献求助10
17秒前
yerong应助健忘的安萱采纳,获得30
17秒前
18秒前
清爽匪完成签到,获得积分20
18秒前
下南完成签到,获得积分10
18秒前
蛋花花花发布了新的文献求助10
19秒前
今后应助陈欣羽采纳,获得10
19秒前
lllxxx完成签到 ,获得积分10
20秒前
21秒前
clientprogram应助garrick采纳,获得20
22秒前
23秒前
23秒前
24秒前
TTT完成签到 ,获得积分10
25秒前
25秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952331
求助须知:如何正确求助?哪些是违规求助? 3497729
关于积分的说明 11088592
捐赠科研通 3228329
什么是DOI,文献DOI怎么找? 1784774
邀请新用户注册赠送积分活动 868913
科研通“疑难数据库(出版商)”最低求助积分说明 801303