Establishment of Best Practices for Evidence for Prediction

心理学 梅德林 医学 政治学 法学
作者
Russell A. Poldrack,Grace Huckins,Gaël Varoquaux
出处
期刊:JAMA Psychiatry [American Medical Association]
卷期号:77 (5): 534-534 被引量:645
标识
DOI:10.1001/jamapsychiatry.2019.3671
摘要

Importance

Great interest exists in identifying methods to predict neuropsychiatric disease states and treatment outcomes from high-dimensional data, including neuroimaging and genomics data. The goal of this review is to highlight several potential problems that can arise in studies that aim to establish prediction.

Observations

A number of neuroimaging studies have claimed to establish prediction while establishing only correlation, which is an inappropriate use of the statistical meaning of prediction. Statistical associations do not necessarily imply the ability to make predictions in a generalized manner; establishing evidence for prediction thus requires testing of the model on data separate from those used to estimate the model's parameters. This article discusses various measures of predictive performance and the limitations of some commonly used measures, with a focus on the importance of using multiple measures when assessing performance. For classification, the area under the receiver operating characteristic curve is an appropriate measure; for regression analysis, correlation should be avoided, and median absolute error is preferred.

Conclusions and Relevance

To ensure accurate estimates of predictive validity, the recommended best practices for predictive modeling include the following: (1) in-sample model fit indices should not be reported as evidence for predictive accuracy, (2) the cross-validation procedure should encompass all operations applied to the data, (3) prediction analyses should not be performed with samples smaller than several hundred observations, (4) multiple measures of prediction accuracy should be examined and reported, (5) the coefficient of determination should be computed using the sums of squares formulation and not the correlation coefficient, and (6) k-fold cross-validation rather than leave-one-out cross-validation should be used.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
lokia发布了新的文献求助10
1秒前
2秒前
3秒前
ABCDE完成签到,获得积分10
4秒前
li发布了新的文献求助10
4秒前
无花果应助sjx采纳,获得10
4秒前
科研通AI5应助霖昭采纳,获得10
5秒前
pbj发布了新的文献求助10
6秒前
包驳发布了新的文献求助30
6秒前
量子星尘发布了新的文献求助10
7秒前
myelin发布了新的文献求助10
8秒前
8秒前
8秒前
zhuzhu发布了新的文献求助10
8秒前
完美世界应助李静宇采纳,获得10
8秒前
9秒前
2024011023完成签到,获得积分20
9秒前
zh完成签到,获得积分10
9秒前
所所应助小名叫阿春采纳,获得10
9秒前
橘子完成签到 ,获得积分10
9秒前
9秒前
木瓜小五哥完成签到,获得积分10
9秒前
科研通AI6应助nextconnie采纳,获得10
10秒前
11秒前
黄连完成签到,获得积分10
11秒前
科研通AI5应助pbj采纳,获得10
11秒前
12秒前
wacfpp完成签到,获得积分10
12秒前
开心超人发布了新的文献求助20
12秒前
12秒前
yyy发布了新的文献求助10
13秒前
漫鹤完成签到,获得积分20
13秒前
zh发布了新的文献求助30
13秒前
14秒前
14秒前
14秒前
无语发布了新的文献求助20
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Research Handbook on Corporate Governance in China 800
translating meaning 500
Hidden Generalizations Phonological Opacity in Optimality Theory 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4904515
求助须知:如何正确求助?哪些是违规求助? 4182696
关于积分的说明 12986696
捐赠科研通 3948522
什么是DOI,文献DOI怎么找? 2165566
邀请新用户注册赠送积分活动 1184085
关于科研通互助平台的介绍 1090457