Small Data Challenges in Big Data Era: A Survey of Recent Progress on Unsupervised and Semi-Supervised Methods

人工智能 计算机科学 无监督学习 机器学习 深度学习 监督学习 特征学习 半监督学习 生成语法 代表(政治) 人工神经网络 政治学 政治 法学
作者
Guo-Jun Qi,Jiebo Luo
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:44 (4): 2168-2187 被引量:202
标识
DOI:10.1109/tpami.2020.3031898
摘要

Representation learning with small labeled data have emerged in many problems, since the success of deep neural networks often relies on the availability of a huge amount of labeled data that is expensive to collect. To address it, many efforts have been made on training sophisticated models with few labeled data in an unsupervised and semi-supervised fashion. In this paper, we will review the recent progresses on these two major categories of methods. A wide spectrum of models will be categorized in a big picture, where we will show how they interplay with each other to motivate explorations of new ideas. We will review the principles of learning the transformation equivariant, disentangled, self-supervised and semi-supervised representations, all of which underpin the foundation of recent progresses. Many implementations of unsupervised and semi-supervised generative models have been developed on the basis of these criteria, greatly expanding the territory of existing autoencoders, generative adversarial nets (GANs) and other deep networks by exploring the distribution of unlabeled data for more powerful representations. We will discuss emerging topics by revealing the intrinsic connections between unsupervised and semi-supervised learning, and propose in future directions to bridge the algorithmic and theoretical gap between transformation equivariance for unsupervised learning and supervised invariance for supervised learning, and unify unsupervised pretraining and supervised finetuning. We will also provide a broader outlook of future directions to unify transformation and instance equivariances for representation learning, connect unsupervised and semi-supervised augmentations, and explore the role of the self-supervised regularization for many learning problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
慕青应助绍成采纳,获得10
2秒前
zhangfuchao发布了新的文献求助10
3秒前
西卡发布了新的文献求助10
3秒前
MOhy发布了新的文献求助10
4秒前
4秒前
许宗菊发布了新的文献求助200
5秒前
5秒前
6秒前
科研通AI2S应助sdvsd采纳,获得10
7秒前
9秒前
zxz发布了新的文献求助10
9秒前
星辰大海应助MOhy采纳,获得10
10秒前
脑洞疼应助姜二采纳,获得10
10秒前
酷波er应助Pt采纳,获得10
11秒前
11秒前
hamzhang0426发布了新的文献求助10
11秒前
jevon应助zzz采纳,获得10
12秒前
大个应助杨金城采纳,获得10
12秒前
Hello应助可可可采纳,获得10
13秒前
nini完成签到,获得积分10
13秒前
zhangfuchao完成签到,获得积分10
13秒前
hhl完成签到,获得积分10
13秒前
14秒前
小二郎应助刘YF采纳,获得10
14秒前
15秒前
热情依白完成签到,获得积分10
16秒前
16秒前
hamzhang0426完成签到,获得积分10
17秒前
niuniu完成签到,获得积分10
17秒前
一个小菜鸡完成签到,获得积分10
18秒前
18秒前
大脸猫发布了新的文献求助10
18秒前
Sharyn227发布了新的文献求助10
19秒前
lilala发布了新的文献求助10
20秒前
20秒前
Candice应助科研通管家采纳,获得10
20秒前
一一应助科研通管家采纳,获得20
20秒前
彭于晏应助科研通管家采纳,获得200
20秒前
ren应助科研通管家采纳,获得10
21秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3233742
求助须知:如何正确求助?哪些是违规求助? 2880231
关于积分的说明 8214458
捐赠科研通 2547669
什么是DOI,文献DOI怎么找? 1377140
科研通“疑难数据库(出版商)”最低求助积分说明 647736
邀请新用户注册赠送积分活动 623187