Small Data Challenges in Big Data Era: A Survey of Recent Progress on Unsupervised and Semi-Supervised Methods

人工智能 计算机科学 无监督学习 机器学习 深度学习 监督学习 特征学习 半监督学习 生成语法 代表(政治) 人工神经网络 政治 政治学 法学
作者
Guo-Jun Qi,Jiebo Luo
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:44 (4): 2168-2187 被引量:202
标识
DOI:10.1109/tpami.2020.3031898
摘要

Representation learning with small labeled data have emerged in many problems, since the success of deep neural networks often relies on the availability of a huge amount of labeled data that is expensive to collect. To address it, many efforts have been made on training sophisticated models with few labeled data in an unsupervised and semi-supervised fashion. In this paper, we will review the recent progresses on these two major categories of methods. A wide spectrum of models will be categorized in a big picture, where we will show how they interplay with each other to motivate explorations of new ideas. We will review the principles of learning the transformation equivariant, disentangled, self-supervised and semi-supervised representations, all of which underpin the foundation of recent progresses. Many implementations of unsupervised and semi-supervised generative models have been developed on the basis of these criteria, greatly expanding the territory of existing autoencoders, generative adversarial nets (GANs) and other deep networks by exploring the distribution of unlabeled data for more powerful representations. We will discuss emerging topics by revealing the intrinsic connections between unsupervised and semi-supervised learning, and propose in future directions to bridge the algorithmic and theoretical gap between transformation equivariance for unsupervised learning and supervised invariance for supervised learning, and unify unsupervised pretraining and supervised finetuning. We will also provide a broader outlook of future directions to unify transformation and instance equivariances for representation learning, connect unsupervised and semi-supervised augmentations, and explore the role of the self-supervised regularization for many learning problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王耀武完成签到,获得积分10
刚刚
朴素念之完成签到,获得积分20
1秒前
1秒前
学术裁缝发布了新的文献求助10
1秒前
连冬萱发布了新的文献求助10
1秒前
ruby完成签到,获得积分10
1秒前
大魔王完成签到 ,获得积分10
2秒前
zhang完成签到,获得积分10
2秒前
YW发布了新的文献求助30
2秒前
xg发布了新的文献求助10
3秒前
4秒前
5秒前
6秒前
踏实绮露完成签到 ,获得积分10
6秒前
6秒前
iam小羊人完成签到,获得积分20
7秒前
7秒前
8秒前
失眠无声完成签到,获得积分10
8秒前
Jiang完成签到,获得积分10
9秒前
大模型应助称心的乘云采纳,获得10
9秒前
桐桐应助lw采纳,获得10
10秒前
10秒前
Hello应助连冬萱采纳,获得30
11秒前
11秒前
12秒前
Rain_BJ发布了新的文献求助10
12秒前
Carolin完成签到,获得积分10
13秒前
孙宗帅发布了新的文献求助10
13秒前
13秒前
iam小羊人发布了新的文献求助20
13秒前
14秒前
下雨天睡个懒觉完成签到,获得积分10
15秒前
丘比特应助强壮的美女采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
15秒前
在水一方应助科研通管家采纳,获得10
15秒前
认真灯泡完成签到,获得积分10
15秒前
Jasper应助科研通管家采纳,获得10
15秒前
大模型应助科研通管家采纳,获得10
16秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5226726
求助须知:如何正确求助?哪些是违规求助? 4398101
关于积分的说明 13688414
捐赠科研通 4262779
什么是DOI,文献DOI怎么找? 2339284
邀请新用户注册赠送积分活动 1336666
关于科研通互助平台的介绍 1292702