亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Small Data Challenges in Big Data Era: A Survey of Recent Progress on Unsupervised and Semi-Supervised Methods

人工智能 计算机科学 无监督学习 机器学习 深度学习 监督学习 特征学习 半监督学习 生成语法 代表(政治) 人工神经网络 政治学 政治 法学
作者
Guo-Jun Qi,Jiebo Luo
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:44 (4): 2168-2187 被引量:202
标识
DOI:10.1109/tpami.2020.3031898
摘要

Representation learning with small labeled data have emerged in many problems, since the success of deep neural networks often relies on the availability of a huge amount of labeled data that is expensive to collect. To address it, many efforts have been made on training sophisticated models with few labeled data in an unsupervised and semi-supervised fashion. In this paper, we will review the recent progresses on these two major categories of methods. A wide spectrum of models will be categorized in a big picture, where we will show how they interplay with each other to motivate explorations of new ideas. We will review the principles of learning the transformation equivariant, disentangled, self-supervised and semi-supervised representations, all of which underpin the foundation of recent progresses. Many implementations of unsupervised and semi-supervised generative models have been developed on the basis of these criteria, greatly expanding the territory of existing autoencoders, generative adversarial nets (GANs) and other deep networks by exploring the distribution of unlabeled data for more powerful representations. We will discuss emerging topics by revealing the intrinsic connections between unsupervised and semi-supervised learning, and propose in future directions to bridge the algorithmic and theoretical gap between transformation equivariance for unsupervised learning and supervised invariance for supervised learning, and unify unsupervised pretraining and supervised finetuning. We will also provide a broader outlook of future directions to unify transformation and instance equivariances for representation learning, connect unsupervised and semi-supervised augmentations, and explore the role of the self-supervised regularization for many learning problems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
33秒前
39秒前
科研通AI6应助儒雅的夏翠采纳,获得10
54秒前
shhoing应助科研通管家采纳,获得10
1分钟前
wanci应助科研通管家采纳,获得10
1分钟前
shhoing应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
儒雅的夏翠完成签到,获得积分10
2分钟前
英俊的铭应助冷艳的萝莉采纳,获得30
2分钟前
2分钟前
3分钟前
shhoing应助科研通管家采纳,获得10
3分钟前
shhoing应助科研通管家采纳,获得10
3分钟前
3分钟前
阔达的沛文完成签到,获得积分10
3分钟前
3分钟前
Alanni完成签到 ,获得积分10
4分钟前
冷艳的萝莉完成签到,获得积分10
4分钟前
4分钟前
4分钟前
留胡子的裘完成签到 ,获得积分10
5分钟前
5分钟前
6分钟前
shhoing应助科研通管家采纳,获得10
7分钟前
xingsixs发布了新的文献求助10
7分钟前
xingsixs完成签到,获得积分10
7分钟前
科研通AI2S应助英勇的半蕾采纳,获得30
8分钟前
调皮的代双完成签到 ,获得积分10
8分钟前
xxll完成签到,获得积分10
9分钟前
咎不可完成签到,获得积分10
11分钟前
Ellalala完成签到 ,获得积分10
11分钟前
lina完成签到 ,获得积分10
12分钟前
12分钟前
月刊完成签到 ,获得积分10
12分钟前
13分钟前
科研通AI2S应助heisa采纳,获得10
13分钟前
科研通AI6应助cllk采纳,获得10
14分钟前
shhoing应助科研通管家采纳,获得10
15分钟前
Freya1528完成签到,获得积分10
16分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5558600
求助须知:如何正确求助?哪些是违规求助? 4643677
关于积分的说明 14671367
捐赠科研通 4584970
什么是DOI,文献DOI怎么找? 2515285
邀请新用户注册赠送积分活动 1489369
关于科研通互助平台的介绍 1460113