摘要
International Journal of Energy ResearchVolume 45, Issue 4 p. 5248-5262 RESEARCH ARTICLE Enhanced thermal energy storage of nitrate salts by silica nanoparticles for concentrating solar power Yaxuan Xiong, Corresponding Author Yaxuan Xiong xiongyaxuan@bucea.edu.cn Beijing Key Lab of Heating, Gas Supply, Ventilating and Air Conditioning Engineering, Beijing University of Civil Engineering and Architecture, Beijing, China Correspondence Yaxuan Xiong, Beijing Key Lab of Heating, Gas Supply, Ventilating and Air Conditioning Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China. Email: xiongyaxuan@bucea.edu.cn Chuan Li, Birmingham Center for Energy storage, University of Birmingham, Birmingham B15 2TT, UK. Email: lichuan0315@hotmail.comSearch for more papers by this authorZhenyu Wang, Zhenyu Wang Beijing Key Lab of Heating, Gas Supply, Ventilating and Air Conditioning Engineering, Beijing University of Civil Engineering and Architecture, Beijing, ChinaSearch for more papers by this authorMingyuan Sun, Mingyuan Sun orcid.org/0000-0002-6061-7198 Beijing Key Lab of Heating, Gas Supply, Ventilating and Air Conditioning Engineering, Beijing University of Civil Engineering and Architecture, Beijing, ChinaSearch for more papers by this authorYuting Wu, Yuting Wu Key Laboratory of Heat Transfer Enhancement and Process Energy Conservation, Beijing University of Technology, Beijing, ChinaSearch for more papers by this authorPeng Xu, Peng Xu Beijing Key Lab of Heating, Gas Supply, Ventilating and Air Conditioning Engineering, Beijing University of Civil Engineering and Architecture, Beijing, ChinaSearch for more papers by this authorXu Qian, Xu Qian School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, ChinaSearch for more papers by this authorChuan Li, Corresponding Author Chuan Li lichuan0315@hotmail.com Birmingham Center for Energy storage, University of Birmingham, Birmingham, UK Correspondence Yaxuan Xiong, Beijing Key Lab of Heating, Gas Supply, Ventilating and Air Conditioning Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China. Email: xiongyaxuan@bucea.edu.cn Chuan Li, Birmingham Center for Energy storage, University of Birmingham, Birmingham B15 2TT, UK. Email: lichuan0315@hotmail.comSearch for more papers by this authorYulong Ding, Yulong Ding Birmingham Center for Energy storage, University of Birmingham, Birmingham, UKSearch for more papers by this authorChongfang Ma, Chongfang Ma Key Laboratory of Heat Transfer Enhancement and Process Energy Conservation, Beijing University of Technology, Beijing, ChinaSearch for more papers by this author Yaxuan Xiong, Corresponding Author Yaxuan Xiong xiongyaxuan@bucea.edu.cn Beijing Key Lab of Heating, Gas Supply, Ventilating and Air Conditioning Engineering, Beijing University of Civil Engineering and Architecture, Beijing, China Correspondence Yaxuan Xiong, Beijing Key Lab of Heating, Gas Supply, Ventilating and Air Conditioning Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China. Email: xiongyaxuan@bucea.edu.cn Chuan Li, Birmingham Center for Energy storage, University of Birmingham, Birmingham B15 2TT, UK. Email: lichuan0315@hotmail.comSearch for more papers by this authorZhenyu Wang, Zhenyu Wang Beijing Key Lab of Heating, Gas Supply, Ventilating and Air Conditioning Engineering, Beijing University of Civil Engineering and Architecture, Beijing, ChinaSearch for more papers by this authorMingyuan Sun, Mingyuan Sun orcid.org/0000-0002-6061-7198 Beijing Key Lab of Heating, Gas Supply, Ventilating and Air Conditioning Engineering, Beijing University of Civil Engineering and Architecture, Beijing, ChinaSearch for more papers by this authorYuting Wu, Yuting Wu Key Laboratory of Heat Transfer Enhancement and Process Energy Conservation, Beijing University of Technology, Beijing, ChinaSearch for more papers by this authorPeng Xu, Peng Xu Beijing Key Lab of Heating, Gas Supply, Ventilating and Air Conditioning Engineering, Beijing University of Civil Engineering and Architecture, Beijing, ChinaSearch for more papers by this authorXu Qian, Xu Qian School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, ChinaSearch for more papers by this authorChuan Li, Corresponding Author Chuan Li lichuan0315@hotmail.com Birmingham Center for Energy storage, University of Birmingham, Birmingham, UK Correspondence Yaxuan Xiong, Beijing Key Lab of Heating, Gas Supply, Ventilating and Air Conditioning Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China. Email: xiongyaxuan@bucea.edu.cn Chuan Li, Birmingham Center for Energy storage, University of Birmingham, Birmingham B15 2TT, UK. Email: lichuan0315@hotmail.comSearch for more papers by this authorYulong Ding, Yulong Ding Birmingham Center for Energy storage, University of Birmingham, Birmingham, UKSearch for more papers by this authorChongfang Ma, Chongfang Ma Key Laboratory of Heat Transfer Enhancement and Process Energy Conservation, Beijing University of Technology, Beijing, ChinaSearch for more papers by this author First published: 30 October 2020 https://doi.org/10.1002/er.6142Citations: 6 Funding information: Beijing Municipal Natural Science Foundation, Grant/Award Number: 3151001; National Nature Science Foundation of China, Grant/Award Number: 51206004; Scientific Research Program of Beijing Municipal Education Commission, Grant/Award Number: KM201910016011 Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onFacebookTwitterLinked InRedditWechat Summary Dispersing nanomaterials can effectively improve the thermal energy storage performance of molten salts. However, research on such improvement mechanism is still immature, as the understanding of the performance improvement levels induced by different nanoparticles has not been consistent. Using silica nanoparticles as additives, this work prepares nine molten salt nanofluids by aqueous solution method with the use of potassium nitrate, sodium nitrate, and their binary mixture as base salts. The key thermal performance of these nanofluids are evaluated through different characterization approaches, such as differential scanning calorimetry, thermal gravimetric analysis, laser flash analysis, and scanning electron microscopy for microstructural characteristics. The possible performance enhancement mechanism caused by silica nanoparticle is also explored. Results show that, for these nine molten salt nanofluids containing silica nanoparticles, the change in the melting point is negligible. The potassium nitrate salt dispersed with 20-nm silica nanoparticles achieve the highest performance improvement not only in latent heat but in specific heat and thermal conductivity, while sodium nitrate salt nanofluids reach maximum improvement at their decomposing temperature. The improvement level can be associated with the electronegativity of alkali ions. Cloud nuclei cause microstructure differences among molten salt nanofluids and may be the main reason for the thermal performance enhancement of the molten salt nanofluids. Citing Literature Volume45, Issue425 March 2021Pages 5248-5262 RelatedInformation