Regularization on Augmented Data to Diversify Sparse Representation for Robust Image Classification

稀疏逼近 正规化(语言学) 计算机科学 人工智能 稳健性(进化) 模式识别(心理学) 机器学习 合成数据 生物化学 基因 化学
作者
Shaoning Zeng,Bob Zhang,Jianping Gou,Yong Xu
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:52 (6): 4935-4948 被引量:34
标识
DOI:10.1109/tcyb.2020.3025757
摘要

Image classification is a fundamental component in modern computer vision systems, where sparse representation-based classification has drawn a lot of attention due to its robustness. However, on the optimization of sparse learning systems, regularization and data augmentation are both powerful, but currently isolated. We believe that regularization and data augmentation can cooperate to generate a breakthrough in robust image classification. In this article, we propose a novel framework, regularization on augmented data (READ), which creates diversification in the data using the generic augmentation techniques to implement robust sparse representation-based image classification. When the training data are augmented, READ applies a distinct regularizer, l1 or l2 , in particular, on the augmented training data apart from the original data, so that regularization and data augmentation are utilized and enhanced synchronously. We introduce an elaborate theoretical analysis on how to optimize the sparse representation by both l1 -norm and l2 -norm with the generic data augmentation and demonstrate its performance in extensive experiments. The results obtained on several facial and object datasets show that READ outperforms many state-of-the-art methods when using deep features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助兔雳采纳,获得10
刚刚
开心的安南完成签到,获得积分20
1秒前
yuanquaner发布了新的文献求助10
1秒前
勤劳的以蓝完成签到,获得积分10
1秒前
1秒前
mumu完成签到,获得积分10
2秒前
3秒前
顾矜应助peanut采纳,获得10
3秒前
MoNesy发布了新的文献求助10
5秒前
cindy完成签到,获得积分10
5秒前
凡而不庸发布了新的文献求助20
6秒前
苗广山完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
Orange应助爆螺钉采纳,获得10
7秒前
番茄汤锅完成签到,获得积分10
7秒前
爆米花应助丶呆久自然萌采纳,获得10
7秒前
mengjh完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
飞鸟发布了新的文献求助10
8秒前
俏皮的芷巧完成签到,获得积分10
8秒前
9秒前
Wy完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
qiaoxin完成签到,获得积分20
11秒前
11秒前
wei完成签到,获得积分20
11秒前
洛苏发布了新的文献求助10
12秒前
Kra完成签到,获得积分10
12秒前
13秒前
简言完成签到,获得积分10
14秒前
搜集达人应助土土采纳,获得10
14秒前
桐桐应助衣袖染墨色采纳,获得10
15秒前
15秒前
15秒前
wy18567337203发布了新的文献求助10
16秒前
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952008
求助须知:如何正确求助?哪些是违规求助? 3497414
关于积分的说明 11087298
捐赠科研通 3228031
什么是DOI,文献DOI怎么找? 1784626
邀请新用户注册赠送积分活动 868824
科研通“疑难数据库(出版商)”最低求助积分说明 801198