Reinforcement Learning for Optimizing Driving Policies on Cruising Taxis Services

出租车 强化学习 马尔可夫决策过程 计算机科学 贝尔曼方程 水准点(测量) 功能(生物学) 收入 运筹学 订单(交换) 马尔可夫过程 运输工程 数学优化 工程类 经济 人工智能 数学 财务 地理 会计 统计 生物 进化生物学 大地测量学
作者
Kun Jin,Wei Wang,Xuedong Hua,Wei Zhou
出处
期刊:Sustainability [MDPI AG]
卷期号:12 (21): 8883-8883 被引量:4
标识
DOI:10.3390/su12218883
摘要

As the key element of urban transportation, taxis services significantly provide convenience and comfort for residents’ travel. However, the reality has not shown much efficiency. Previous researchers mainly aimed to optimize policies by order dispatch on ride-hailing services, which cannot be applied in cruising taxis services. This paper developed the reinforcement learning (RL) framework to optimize driving policies on cruising taxis services. Firstly, we formulated the drivers’ behaviours as the Markov decision process (MDP) progress, considering the influences after taking action in the long run. The RL framework using dynamic programming and data expansion was employed to calculate the state-action value function. Following the value function, drivers can determine the best choice and then quantify the expected future reward at a particular state. By utilizing historic orders data in Chengdu, we analysed the function value’s spatial distribution and demonstrated how the model could optimize the driving policies. Finally, the realistic simulation of the on-demand platform was built. Compared with other benchmark methods, the results verified that the new model performs better in increasing total revenue, answer rate and decreasing waiting time, with the relative percentages of 4.8%, 6.2% and −27.27% at most.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wuli发布了新的文献求助10
刚刚
耶耶耶发布了新的文献求助10
刚刚
旭_发布了新的文献求助10
1秒前
2秒前
noyal完成签到,获得积分10
2秒前
2秒前
滕千万发布了新的文献求助20
2秒前
2秒前
Hello应助橙汁椰子汁采纳,获得30
3秒前
科研通AI2S应助xxx采纳,获得10
3秒前
orixero应助小于采纳,获得10
3秒前
LLL完成签到,获得积分10
3秒前
mmyhn应助科研通管家采纳,获得10
4秒前
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
斯文败类应助科研通管家采纳,获得10
4秒前
周坚强应助科研通管家采纳,获得10
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
Akim应助科研通管家采纳,获得10
4秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
李爱国应助科研通管家采纳,获得10
4秒前
情怀应助科研通管家采纳,获得10
4秒前
完美世界应助科研通管家采纳,获得20
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
5秒前
Hello应助科研通管家采纳,获得10
5秒前
小飞七应助科研通管家采纳,获得10
5秒前
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
李健应助科研通管家采纳,获得10
5秒前
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
5秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3552578
求助须知:如何正确求助?哪些是违规求助? 3128653
关于积分的说明 9379124
捐赠科研通 2827818
什么是DOI,文献DOI怎么找? 1554720
邀请新用户注册赠送积分活动 725544
科研通“疑难数据库(出版商)”最低求助积分说明 715000