A deep neural network application for improved prediction of HbA1c in type 1 diabetes

卷积神经网络 人工智能 稳健性(进化) 人工神经网络 计算机科学 缺少数据 平均绝对误差 深度学习 模式识别(心理学) 近似误差 均方误差 统计 机器学习 数学 算法 化学 基因 生物化学
作者
Aleksandr Zaitcev,Mohammad R. Eissa,Hui Zeng,Tim Good,Jackie Elliott,Mohammed Benaissa
链接
摘要

HbA1c is a primary marker of long-term average blood glucose, which is an essential measure of successful control in type 1 diabetes. Previous studies have shown that HbA1c estimates can be obtained from 5- 12 weeks of daily blood glucose measurements. However, these methods suffer from accuracy limitations when applied to incomplete data with missing periods of measurements. The aim of this work is to overcome these limitations improving the accuracy and robustness of HbA1c prediction from time series of blood glucose. A novel data-driven HbA1c prediction model based on deep learning and convolutional neural networks is presented. The model focuses on the extraction of behavioral patterns from sequences of self-monitored blood glucose readings on various temporal scales. Assuming that subjects who share behavioral patterns have also similar capabilities for diabetes control and resulting HbA1c, it becomes possible to infer the HbA1c of subjects with incomplete data from multiple observations of similar behaviors. Trained and validated on a dataset, containing 1543 real world observation epochs from 759 subjects, the model has achieved the mean absolute error of 4.80±0.62 mmol/mol, median absolute error of 3.81±0.58 mmol/mol and R2 of 0.71±0.09 on average during the 10 fold cross validation. Automatic behavioral characterization via extraction of sequential features by the proposed convolutional neural network structure has significantly improved the accuracy of HbA1c prediction compared to the existing methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杰哥完成签到,获得积分10
1秒前
七个丸子完成签到,获得积分10
2秒前
2秒前
三水完成签到,获得积分10
3秒前
3秒前
6秒前
潇洒的诗桃应助巴拉巴拉采纳,获得10
9秒前
吴彦祖的通通完成签到 ,获得积分10
9秒前
雪白的面包完成签到 ,获得积分10
10秒前
11秒前
cai发布了新的文献求助10
13秒前
14秒前
沐颜完成签到 ,获得积分10
15秒前
无花果应助wxyllxx采纳,获得30
15秒前
15秒前
研友_LNoAMn发布了新的文献求助10
16秒前
17秒前
ZrY完成签到,获得积分10
18秒前
huchen发布了新的文献求助10
19秒前
20秒前
23秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
Lucas应助科研通管家采纳,获得10
24秒前
Jasper应助科研通管家采纳,获得10
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
24秒前
小蘑菇应助一只虎斑猫采纳,获得10
24秒前
Hello应助科研通管家采纳,获得10
24秒前
汉堡包应助科研通管家采纳,获得30
24秒前
Henry应助科研通管家采纳,获得200
24秒前
深情安青应助科研通管家采纳,获得10
25秒前
赘婿应助科研通管家采纳,获得10
25秒前
NexusExplorer应助科研通管家采纳,获得10
25秒前
英姑应助科研通管家采纳,获得10
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
25秒前
难摧发布了新的文献求助10
25秒前
turui完成签到 ,获得积分10
27秒前
美丽梦秋完成签到,获得积分10
27秒前
风飘絮舞发布了新的文献求助10
28秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137511
求助须知:如何正确求助?哪些是违规求助? 2788516
关于积分的说明 7786944
捐赠科研通 2444783
什么是DOI,文献DOI怎么找? 1300018
科研通“疑难数据库(出版商)”最低求助积分说明 625770
版权声明 601023