重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

A deep neural network application for improved prediction of HbA1c in type 1 diabetes

卷积神经网络 人工智能 稳健性(进化) 人工神经网络 计算机科学 缺少数据 平均绝对误差 深度学习 模式识别(心理学) 近似误差 均方误差 统计 机器学习 数学 算法 化学 生物化学 基因
作者
Aleksandr Zaitcev,Mohammad R. Eissa,Hui Zeng,Tim Good,Jackie Elliott,Mohammed Benaissa
链接
摘要

HbA1c is a primary marker of long-term average blood glucose, which is an essential measure of successful control in type 1 diabetes. Previous studies have shown that HbA1c estimates can be obtained from 5- 12 weeks of daily blood glucose measurements. However, these methods suffer from accuracy limitations when applied to incomplete data with missing periods of measurements. The aim of this work is to overcome these limitations improving the accuracy and robustness of HbA1c prediction from time series of blood glucose. A novel data-driven HbA1c prediction model based on deep learning and convolutional neural networks is presented. The model focuses on the extraction of behavioral patterns from sequences of self-monitored blood glucose readings on various temporal scales. Assuming that subjects who share behavioral patterns have also similar capabilities for diabetes control and resulting HbA1c, it becomes possible to infer the HbA1c of subjects with incomplete data from multiple observations of similar behaviors. Trained and validated on a dataset, containing 1543 real world observation epochs from 759 subjects, the model has achieved the mean absolute error of 4.80±0.62 mmol/mol, median absolute error of 3.81±0.58 mmol/mol and R2 of 0.71±0.09 on average during the 10 fold cross validation. Automatic behavioral characterization via extraction of sequential features by the proposed convolutional neural network structure has significantly improved the accuracy of HbA1c prediction compared to the existing methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
爆米花应助自由的幻悲采纳,获得30
1秒前
1秒前
561424175完成签到,获得积分10
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
知其荣发布了新的文献求助10
2秒前
搞怪飞机发布了新的文献求助10
2秒前
肥仔龙发布了新的文献求助10
2秒前
yin发布了新的文献求助10
3秒前
Junyi发布了新的文献求助10
3秒前
阿斯顿发布了新的文献求助10
3秒前
CipherSage应助Sandy采纳,获得10
3秒前
4秒前
小二郎应助啾啾采纳,获得10
4秒前
4秒前
哎哟我去完成签到,获得积分10
4秒前
科研通AI2S应助李浩然采纳,获得10
4秒前
4秒前
香蕉觅云应助半糖微辣采纳,获得10
4秒前
4秒前
5秒前
CipherSage应助GC_AIBio采纳,获得10
5秒前
5秒前
chen发布了新的文献求助10
6秒前
Ting完成签到,获得积分10
6秒前
yyds发布了新的文献求助10
6秒前
熙梓日记完成签到,获得积分10
6秒前
SciGPT应助Lu采纳,获得10
6秒前
可爱的函函应助qianlu采纳,获得30
6秒前
7秒前
7秒前
7秒前
赵景豪发布了新的文献求助30
8秒前
虚幻的不评完成签到,获得积分10
8秒前
8秒前
9秒前
哒哒完成签到,获得积分10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466271
求助须知:如何正确求助?哪些是违规求助? 4570197
关于积分的说明 14323735
捐赠科研通 4496698
什么是DOI,文献DOI怎么找? 2463500
邀请新用户注册赠送积分活动 1452381
关于科研通互助平台的介绍 1427516