Development and validation of two artificial intelligence models for diagnosing benign, pigmented facial skin lesions

卷积神经网络 人工智能 深度学习 计算机科学 残差神经网络 试验装置 模式识别(心理学) 皮肤损伤 色素沉着 人工神经网络 皮肤病科 集合(抽象数据类型) 医学 程序设计语言
作者
Yin Yang,Yiping Ge,Lifang Guo,Qiuju Wu,Peng Lin,Mengli Zhang,Junxiang Xie,Yong Li,Tong Lin
出处
期刊:Skin Research and Technology [Wiley]
卷期号:27 (1): 74-79 被引量:36
标识
DOI:10.1111/srt.12911
摘要

Abstract Objective This study used deep learning for diagnosing common, benign hyperpigmentation. Method In this study, two convolutional neural networks were used to identify six pigmentary diseases, and a disease diagnosis model was established. Because the distribution of lesions in the original training picture is very complex, we cropped the image around the lesions, trained the network on the extracted lesion images, and fused the verification results of the overall picture and the extracted picture to assess the model performance in identifying hyperpigmented dermatitis pictures. Finally, we evaluated the image recognition performance of the two convolutional neural networks and the converged networks in the test set through a comparison of the converged network and the physicians’ assessments. Results The AUC of DenseNet‐96 for the overall picture was 0.98, whereas the AUC of ResNet‐152 was 0.96; therefore, we concluded that DenseNet‐96 performed better than ResNet‐152. From the AUC, the converged network has the best performance. The converged network model achieved a comprehensive classification performance comparable to that of the doctors. Conclusions The diagnostic model for benign, pigmented skin lesions based on convolutional neural networks had a slightly higher overall performance than the skin specialists.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Owen应助yier采纳,获得10
刚刚
今后应助典雅的俊驰采纳,获得10
1秒前
1秒前
2秒前
FashionBoy应助刻苦的黑米采纳,获得10
2秒前
等等完成签到,获得积分10
3秒前
科研通AI2S应助喜悦酸奶采纳,获得10
3秒前
4秒前
jimmy发布了新的文献求助10
4秒前
Owen应助小杨同学采纳,获得10
4秒前
柯不正完成签到,获得积分10
4秒前
4秒前
爆米花应助体贴花卷采纳,获得10
5秒前
5秒前
NaCl发布了新的文献求助10
5秒前
松鼠叶完成签到,获得积分10
5秒前
6秒前
小二郎应助杨旸采纳,获得10
7秒前
Zzz发布了新的文献求助10
7秒前
柯不正发布了新的文献求助10
7秒前
7788999发布了新的文献求助10
7秒前
8秒前
热心又蓝完成签到,获得积分10
8秒前
满眼喜欢遍布星河完成签到,获得积分10
8秒前
8秒前
yingtiao发布了新的文献求助10
9秒前
健壮雨兰发布了新的文献求助10
9秒前
9秒前
Xdz完成签到 ,获得积分10
9秒前
丘比特应助恐里乔太岁采纳,获得10
9秒前
10秒前
11秒前
土豆完成签到,获得积分10
11秒前
haofan17完成签到,获得积分10
12秒前
zhuguli完成签到,获得积分10
12秒前
7788999完成签到,获得积分10
12秒前
我是老大应助语秋采纳,获得10
13秒前
努力发一区完成签到 ,获得积分10
13秒前
14秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312474
求助须知:如何正确求助?哪些是违规求助? 2945127
关于积分的说明 8523062
捐赠科研通 2620847
什么是DOI,文献DOI怎么找? 1433151
科研通“疑难数据库(出版商)”最低求助积分说明 664881
邀请新用户注册赠送积分活动 650255