罗伊特
计量经济学
普罗比特
有序概率单位
逻辑回归
Probit模型
变量(数学)
协变量
统计
数学
经济
计算机科学
数学分析
作者
Leslie E. Papke,Jeffrey M. Wooldridge
标识
DOI:10.1002/(sici)1099-1255(199611)11:6<619::aid-jae418>3.0.co;2-1
摘要
We develop attractive functional forms and simple quasi-likelihood estimation methods for regression models with a fractional dependent variable. Compared with log-odds type procedures, there is no difficulty in recovering the regression function for the fractional variable, and there is no need to use ad hoc transformations to handle data at the extreme values of zero and one. We also offer some new, robust specification tests by nesting the logit or probit function in a more general functional form. We apply these methods to a data set of employee participation rates in 401(k) pension plans.
科研通智能强力驱动
Strongly Powered by AbleSci AI