Developing a Clinical Prediction Score: Comparing Prediction Accuracy of Integer Scores to Statistical Regression Models

医学 预测建模 回归分析 统计 回归 线性回归 数学
作者
Vigneshwar Subramanian,Edward J. Mascha,Michael W. Kattan
出处
期刊:Anesthesia & Analgesia [Ovid Technologies (Wolters Kluwer)]
被引量:19
标识
DOI:10.1213/ane.0000000000005362
摘要

Researchers often convert prediction tools built on statistical regression models into integer scores and risk classification systems in the name of simplicity. However, this workflow discards useful information and reduces prediction accuracy. We, therefore, investigated the impact on prediction accuracy when researchers simplify a regression model into an integer score using a simulation study and an example clinical data set. Simulated independent training and test sets (n = 1000) were randomly generated such that a logistic regression model would perform at a specified target area under the receiver operating characteristic curve (AUC) of 0.7, 0.8, or 0.9. After fitting a logistic regression with continuous covariates to each data set, continuous variables were dichotomized using data-dependent cut points. A logistic regression was refit, and the coefficients were scaled and rounded to create an integer score. A risk classification system was built by stratifying integer scores into low-, intermediate-, and high-risk tertiles. Discrimination and calibration were assessed by calculating the AUC and index of prediction accuracy (IPA) for each model. The optimism in performance between the training set and test set was calculated for both AUC and IPA. The logistic regression model using the continuous form of covariates outperformed all other models. In the simulation study, converting the logistic regression model to an integer score and subsequent risk classification system incurred an average decrease of 0.057–0.094 in AUC, and an absolute 6.2%–17.5% in IPA. The largest decrease in both AUC and IPA occurred in the dichotomization step. The dichotomization and risk stratification steps also increased the optimism of the resulting models, such that they appeared to be able to predict better than they actually would on new data. In the clinical data set, converting the logistic regression with continuous covariates to an integer score incurred a decrease in externally validated AUC of 0.06 and a decrease in externally validated IPA of 13%. Converting a regression model to an integer score decreases model performance considerably. Therefore, we recommend developing a regression model that incorporates all available information to make the most accurate predictions possible, and using the unaltered regression model when making predictions for individual patients. In all cases, researchers should be mindful that they correctly validate the specific model that is intended for clinical use.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sylvia完成签到 ,获得积分10
刚刚
量子星尘发布了新的文献求助10
刚刚
babybao完成签到,获得积分10
刚刚
刚刚
刚刚
ww完成签到,获得积分10
刚刚
星先生完成签到 ,获得积分10
1秒前
1秒前
高敏完成签到 ,获得积分10
1秒前
小小完成签到,获得积分10
1秒前
做梦完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
2秒前
3秒前
橘子发布了新的文献求助10
4秒前
yun完成签到,获得积分20
4秒前
汉堡包应助xiaofeizhu采纳,获得10
4秒前
江睿曦完成签到,获得积分10
5秒前
Iva完成签到 ,获得积分10
6秒前
6秒前
6秒前
Criminology34应助wwb采纳,获得10
6秒前
lvv发布了新的文献求助10
6秒前
babybao发布了新的文献求助10
7秒前
多吃蔬菜完成签到,获得积分10
7秒前
李小雨完成签到,获得积分10
7秒前
江睿曦发布了新的文献求助10
8秒前
完美世界应助Master采纳,获得10
8秒前
Akim应助稳重大米采纳,获得10
8秒前
safsafdfasf发布了新的文献求助10
8秒前
yun发布了新的文献求助10
8秒前
8秒前
8秒前
zhaopangpang完成签到,获得积分10
9秒前
lyt发布了新的文献求助10
9秒前
科研通AI6应助会飞的木鱼采纳,获得10
11秒前
曦梦汐完成签到 ,获得积分10
13秒前
文静的化蛹完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665478
求助须知:如何正确求助?哪些是违规求助? 4876942
关于积分的说明 15114156
捐赠科研通 4824747
什么是DOI,文献DOI怎么找? 2582871
邀请新用户注册赠送积分活动 1536832
关于科研通互助平台的介绍 1495350