Developing a Clinical Prediction Score: Comparing Prediction Accuracy of Integer Scores to Statistical Regression Models

医学 预测建模 回归分析 统计 回归 线性回归 数学
作者
Vigneshwar Subramanian,Edward J. Mascha,Michael W. Kattan
出处
期刊:Anesthesia & Analgesia [Lippincott Williams & Wilkins]
被引量:19
标识
DOI:10.1213/ane.0000000000005362
摘要

Researchers often convert prediction tools built on statistical regression models into integer scores and risk classification systems in the name of simplicity. However, this workflow discards useful information and reduces prediction accuracy. We, therefore, investigated the impact on prediction accuracy when researchers simplify a regression model into an integer score using a simulation study and an example clinical data set. Simulated independent training and test sets (n = 1000) were randomly generated such that a logistic regression model would perform at a specified target area under the receiver operating characteristic curve (AUC) of 0.7, 0.8, or 0.9. After fitting a logistic regression with continuous covariates to each data set, continuous variables were dichotomized using data-dependent cut points. A logistic regression was refit, and the coefficients were scaled and rounded to create an integer score. A risk classification system was built by stratifying integer scores into low-, intermediate-, and high-risk tertiles. Discrimination and calibration were assessed by calculating the AUC and index of prediction accuracy (IPA) for each model. The optimism in performance between the training set and test set was calculated for both AUC and IPA. The logistic regression model using the continuous form of covariates outperformed all other models. In the simulation study, converting the logistic regression model to an integer score and subsequent risk classification system incurred an average decrease of 0.057–0.094 in AUC, and an absolute 6.2%–17.5% in IPA. The largest decrease in both AUC and IPA occurred in the dichotomization step. The dichotomization and risk stratification steps also increased the optimism of the resulting models, such that they appeared to be able to predict better than they actually would on new data. In the clinical data set, converting the logistic regression with continuous covariates to an integer score incurred a decrease in externally validated AUC of 0.06 and a decrease in externally validated IPA of 13%. Converting a regression model to an integer score decreases model performance considerably. Therefore, we recommend developing a regression model that incorporates all available information to make the most accurate predictions possible, and using the unaltered regression model when making predictions for individual patients. In all cases, researchers should be mindful that they correctly validate the specific model that is intended for clinical use.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助独特的翠芙采纳,获得10
1秒前
qwp完成签到,获得积分10
1秒前
完美世界应助风汐5423采纳,获得10
2秒前
张菁钊完成签到,获得积分10
2秒前
3秒前
Stacey完成签到,获得积分10
3秒前
Apple发布了新的文献求助10
5秒前
大方向真完成签到,获得积分10
6秒前
岁岁菌完成签到,获得积分10
6秒前
sddsd发布了新的文献求助30
6秒前
7秒前
清秀的麦片完成签到,获得积分10
7秒前
shouz发布了新的文献求助10
7秒前
7秒前
8秒前
脑洞疼应助mmmxxf采纳,获得10
9秒前
10秒前
10秒前
机智念芹完成签到,获得积分20
10秒前
YCmf完成签到,获得积分10
11秒前
令狐贤弟发布了新的文献求助10
11秒前
11秒前
13秒前
13秒前
13秒前
YCmf发布了新的文献求助10
13秒前
机灵班应助自由梦槐采纳,获得20
14秒前
机智念芹发布了新的文献求助10
14秒前
馍夹菜完成签到,获得积分10
14秒前
14秒前
陶醉的水彤完成签到,获得积分10
15秒前
888完成签到,获得积分10
15秒前
tier完成签到,获得积分10
15秒前
wickedzz完成签到,获得积分0
16秒前
16秒前
Apple完成签到,获得积分10
16秒前
17秒前
是阿瑾呀完成签到 ,获得积分10
17秒前
18秒前
打打应助huiee采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5297261
求助须知:如何正确求助?哪些是违规求助? 4446159
关于积分的说明 13838669
捐赠科研通 4331314
什么是DOI,文献DOI怎么找? 2377555
邀请新用户注册赠送积分活动 1372811
关于科研通互助平台的介绍 1338355