Developing a Clinical Prediction Score: Comparing Prediction Accuracy of Integer Scores to Statistical Regression Models

医学 预测建模 回归分析 统计 回归 线性回归 数学
作者
Vigneshwar Subramanian,Edward J. Mascha,Michael W. Kattan
出处
期刊:Anesthesia & Analgesia [Ovid Technologies (Wolters Kluwer)]
被引量:19
标识
DOI:10.1213/ane.0000000000005362
摘要

Researchers often convert prediction tools built on statistical regression models into integer scores and risk classification systems in the name of simplicity. However, this workflow discards useful information and reduces prediction accuracy. We, therefore, investigated the impact on prediction accuracy when researchers simplify a regression model into an integer score using a simulation study and an example clinical data set. Simulated independent training and test sets (n = 1000) were randomly generated such that a logistic regression model would perform at a specified target area under the receiver operating characteristic curve (AUC) of 0.7, 0.8, or 0.9. After fitting a logistic regression with continuous covariates to each data set, continuous variables were dichotomized using data-dependent cut points. A logistic regression was refit, and the coefficients were scaled and rounded to create an integer score. A risk classification system was built by stratifying integer scores into low-, intermediate-, and high-risk tertiles. Discrimination and calibration were assessed by calculating the AUC and index of prediction accuracy (IPA) for each model. The optimism in performance between the training set and test set was calculated for both AUC and IPA. The logistic regression model using the continuous form of covariates outperformed all other models. In the simulation study, converting the logistic regression model to an integer score and subsequent risk classification system incurred an average decrease of 0.057–0.094 in AUC, and an absolute 6.2%–17.5% in IPA. The largest decrease in both AUC and IPA occurred in the dichotomization step. The dichotomization and risk stratification steps also increased the optimism of the resulting models, such that they appeared to be able to predict better than they actually would on new data. In the clinical data set, converting the logistic regression with continuous covariates to an integer score incurred a decrease in externally validated AUC of 0.06 and a decrease in externally validated IPA of 13%. Converting a regression model to an integer score decreases model performance considerably. Therefore, we recommend developing a regression model that incorporates all available information to make the most accurate predictions possible, and using the unaltered regression model when making predictions for individual patients. In all cases, researchers should be mindful that they correctly validate the specific model that is intended for clinical use.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
热情的水杯完成签到,获得积分10
3秒前
cqcc完成签到 ,获得积分10
4秒前
4秒前
5秒前
5秒前
洗衣液完成签到,获得积分10
5秒前
zyy发布了新的文献求助10
6秒前
苏兜兜完成签到,获得积分10
7秒前
8秒前
吴未完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
9秒前
小刘不笨发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
9秒前
BBOOOOOO发布了新的文献求助10
10秒前
Vary发布了新的文献求助10
10秒前
Jasper应助科研通管家采纳,获得10
10秒前
安生发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
微糖应助科研通管家采纳,获得10
10秒前
11秒前
搜集达人应助科研通管家采纳,获得10
11秒前
11秒前
微糖应助科研通管家采纳,获得10
11秒前
烟花应助科研通管家采纳,获得10
11秒前
爆米花应助科研通管家采纳,获得10
11秒前
Ky_Mac应助科研通管家采纳,获得50
11秒前
万能图书馆应助小正采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
所所应助科研通管家采纳,获得10
11秒前
共享精神应助科研通管家采纳,获得10
11秒前
微糖应助科研通管家采纳,获得10
11秒前
11秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742602
求助须知:如何正确求助?哪些是违规求助? 5409228
关于积分的说明 15345305
捐赠科研通 4883751
什么是DOI,文献DOI怎么找? 2625329
邀请新用户注册赠送积分活动 1574165
关于科研通互助平台的介绍 1531093