Developing a Clinical Prediction Score: Comparing Prediction Accuracy of Integer Scores to Statistical Regression Models

医学 预测建模 回归分析 统计 回归 线性回归 数学
作者
Vigneshwar Subramanian,Edward J. Mascha,Michael W. Kattan
出处
期刊:Anesthesia & Analgesia [Ovid Technologies (Wolters Kluwer)]
被引量:19
标识
DOI:10.1213/ane.0000000000005362
摘要

Researchers often convert prediction tools built on statistical regression models into integer scores and risk classification systems in the name of simplicity. However, this workflow discards useful information and reduces prediction accuracy. We, therefore, investigated the impact on prediction accuracy when researchers simplify a regression model into an integer score using a simulation study and an example clinical data set. Simulated independent training and test sets (n = 1000) were randomly generated such that a logistic regression model would perform at a specified target area under the receiver operating characteristic curve (AUC) of 0.7, 0.8, or 0.9. After fitting a logistic regression with continuous covariates to each data set, continuous variables were dichotomized using data-dependent cut points. A logistic regression was refit, and the coefficients were scaled and rounded to create an integer score. A risk classification system was built by stratifying integer scores into low-, intermediate-, and high-risk tertiles. Discrimination and calibration were assessed by calculating the AUC and index of prediction accuracy (IPA) for each model. The optimism in performance between the training set and test set was calculated for both AUC and IPA. The logistic regression model using the continuous form of covariates outperformed all other models. In the simulation study, converting the logistic regression model to an integer score and subsequent risk classification system incurred an average decrease of 0.057–0.094 in AUC, and an absolute 6.2%–17.5% in IPA. The largest decrease in both AUC and IPA occurred in the dichotomization step. The dichotomization and risk stratification steps also increased the optimism of the resulting models, such that they appeared to be able to predict better than they actually would on new data. In the clinical data set, converting the logistic regression with continuous covariates to an integer score incurred a decrease in externally validated AUC of 0.06 and a decrease in externally validated IPA of 13%. Converting a regression model to an integer score decreases model performance considerably. Therefore, we recommend developing a regression model that incorporates all available information to make the most accurate predictions possible, and using the unaltered regression model when making predictions for individual patients. In all cases, researchers should be mindful that they correctly validate the specific model that is intended for clinical use.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
情怀应助大大采纳,获得10
2秒前
3秒前
3秒前
被子完成签到,获得积分10
3秒前
缥缈苑博发布了新的文献求助10
4秒前
完美世界应助wsw111采纳,获得10
4秒前
5秒前
英俊的铭应助自觉的笑寒采纳,获得10
5秒前
王一一完成签到,获得积分10
5秒前
6秒前
酸牛奶完成签到,获得积分10
6秒前
无极微光应助ww采纳,获得20
6秒前
RK_404完成签到,获得积分10
6秒前
bkagyin应助代沁采纳,获得10
7秒前
8秒前
baroco完成签到,获得积分10
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
隐形曼青应助被子采纳,获得10
8秒前
hh发布了新的文献求助30
9秒前
同你讲发布了新的文献求助10
9秒前
拾玖应助xhcdz采纳,获得20
10秒前
10秒前
10秒前
12秒前
Kw发布了新的文献求助10
13秒前
13秒前
13秒前
情怀应助狂野的猕猴桃采纳,获得10
13秒前
李健应助PJ采纳,获得10
14秒前
直捣中科院完成签到,获得积分10
14秒前
14秒前
14秒前
wss完成签到,获得积分10
15秒前
16秒前
16秒前
LIZ发布了新的文献求助10
16秒前
哈哈发布了新的文献求助10
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776692
求助须知:如何正确求助?哪些是违规求助? 5630245
关于积分的说明 15443636
捐赠科研通 4908741
什么是DOI,文献DOI怎么找? 2641390
邀请新用户注册赠送积分活动 1589383
关于科研通互助平台的介绍 1543956