Classification of electromyographic hand gesture signals using machine learning techniques

计算机科学 人工智能 稳健性(进化) 模式识别(心理学) 卷积神经网络 分类器(UML) 语音识别 试验数据 手势 手势识别 隐马尔可夫模型 机器学习 生物化学 化学 基因 程序设计语言
作者
Guangyu Jia,Hak‐Keung Lam,Junkai Liao,Rong Wang
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:401: 236-248 被引量:48
标识
DOI:10.1016/j.neucom.2020.03.009
摘要

The electromyogram (EMG) signals from an individual’s muscles can reflect the biomechanics of human movement. The accurate classification of individual and combined finger movements using surface EMG signals is able to support many applications such as dexterous prosthetic hand control. The existing research of EMG-based hand gesture classification faces the challenges of inaccurate classification, insufficient generalization ability and weak robustness. To address these problems, this paper proposes a deep learning model that combines convolutional auto-encoder and convolutional neural network (CAE+CNN) to classify an EMG dataset consisting of 10 classes of hand gestures. The proposed method shrinks the inputs into a smaller latent space representation using CAE and the resultant compressed features are served as inputs of CNN, which reduces the redundancy of EMG signals and improves the classification accuracy and training efficiency. Besides, to enhance the robustness and generalization ability for classification, a data processing approach is proposed which combines the windowing method and majority voting of the obtained results from the classifier. In addition, comprehensive comparative study is carried out with 8 widely applied and state-of-the-art classifiers in terms of classification accuracy, robustness subject to noise and statistical analysis (sensitivity, specificity, precision, F1 Score and Matthews correlation coefficient). The results demonstrates that the integration of windowing method, CAE+CNN and majority voting achieves the best performance (99.38% test accuracy for the data without adding noise, which is 3.78% higher than the best classifier used for comparison), strongest robustness (achieved 98.13% test accuracy when Gaussian noise of level 1e-5 is added to the raw dataset, which is 4.07% higher than the best classifier used for comparison) and statistical properties compared to other classifiers, which shows the potential for healthcare applications such as movement intention detection and dexterous prostheses control.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WoeL.Aug.11完成签到 ,获得积分10
刚刚
脑洞疼应助Zhaojiaokeyan采纳,获得10
刚刚
药学笙发布了新的文献求助10
2秒前
3秒前
3秒前
4秒前
田园发布了新的文献求助10
4秒前
5秒前
华仔应助樱悼柳雪采纳,获得10
5秒前
英俊的铭应助skyangar采纳,获得10
5秒前
所所应助zxx采纳,获得10
6秒前
Ing完成签到,获得积分10
6秒前
6秒前
6秒前
共享精神应助champagne采纳,获得10
7秒前
7秒前
桐桐应助科研通管家采纳,获得10
7秒前
烟花应助科研通管家采纳,获得10
7秒前
领导范儿应助科研通管家采纳,获得10
7秒前
田様应助科研通管家采纳,获得30
7秒前
7秒前
wjx发布了新的文献求助10
8秒前
乐乐应助科研通管家采纳,获得10
8秒前
桐桐应助科研通管家采纳,获得10
8秒前
Alex应助科研通管家采纳,获得20
8秒前
SYLH应助科研通管家采纳,获得10
8秒前
SYLH应助科研通管家采纳,获得10
8秒前
清爽乐菱应助科研通管家采纳,获得30
8秒前
传奇3应助科研通管家采纳,获得30
8秒前
8秒前
8秒前
8秒前
坚定的珊珊完成签到 ,获得积分10
9秒前
宋子琛发布了新的文献求助10
9秒前
吉不二完成签到,获得积分10
9秒前
Vincenzo发布了新的文献求助10
10秒前
Orange应助黑黑黑采纳,获得10
10秒前
xnzll发布了新的文献求助10
12秒前
12秒前
12秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974797
求助须知:如何正确求助?哪些是违规求助? 3519250
关于积分的说明 11197623
捐赠科研通 3255405
什么是DOI,文献DOI怎么找? 1797769
邀请新用户注册赠送积分活动 877156
科研通“疑难数据库(出版商)”最低求助积分说明 806202