Classification of electromyographic hand gesture signals using machine learning techniques

计算机科学 人工智能 稳健性(进化) 模式识别(心理学) 卷积神经网络 分类器(UML) 语音识别 试验数据 手势 手势识别 隐马尔可夫模型 机器学习 生物化学 化学 基因 程序设计语言
作者
Guangyu Jia,Hak‐Keung Lam,Junkai Liao,Rong Wang
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:401: 236-248 被引量:48
标识
DOI:10.1016/j.neucom.2020.03.009
摘要

The electromyogram (EMG) signals from an individual’s muscles can reflect the biomechanics of human movement. The accurate classification of individual and combined finger movements using surface EMG signals is able to support many applications such as dexterous prosthetic hand control. The existing research of EMG-based hand gesture classification faces the challenges of inaccurate classification, insufficient generalization ability and weak robustness. To address these problems, this paper proposes a deep learning model that combines convolutional auto-encoder and convolutional neural network (CAE+CNN) to classify an EMG dataset consisting of 10 classes of hand gestures. The proposed method shrinks the inputs into a smaller latent space representation using CAE and the resultant compressed features are served as inputs of CNN, which reduces the redundancy of EMG signals and improves the classification accuracy and training efficiency. Besides, to enhance the robustness and generalization ability for classification, a data processing approach is proposed which combines the windowing method and majority voting of the obtained results from the classifier. In addition, comprehensive comparative study is carried out with 8 widely applied and state-of-the-art classifiers in terms of classification accuracy, robustness subject to noise and statistical analysis (sensitivity, specificity, precision, F1 Score and Matthews correlation coefficient). The results demonstrates that the integration of windowing method, CAE+CNN and majority voting achieves the best performance (99.38% test accuracy for the data without adding noise, which is 3.78% higher than the best classifier used for comparison), strongest robustness (achieved 98.13% test accuracy when Gaussian noise of level 1e-5 is added to the raw dataset, which is 4.07% higher than the best classifier used for comparison) and statistical properties compared to other classifiers, which shows the potential for healthcare applications such as movement intention detection and dexterous prostheses control.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
从容追命发布了新的文献求助30
刚刚
淡定发布了新的文献求助10
刚刚
李健应助justin采纳,获得10
1秒前
zero_two完成签到,获得积分10
1秒前
1秒前
逆时针完成签到,获得积分10
2秒前
2秒前
2秒前
4秒前
热心子轩完成签到,获得积分10
4秒前
Y奥完成签到,获得积分10
4秒前
XHH1994发布了新的文献求助10
4秒前
齐小妮发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
隐形曼青应助柏林肥鱼卷采纳,获得10
5秒前
5秒前
Akim应助47采纳,获得10
5秒前
思源应助风清扬采纳,获得10
6秒前
量子星尘发布了新的文献求助50
6秒前
猪丢了完成签到 ,获得积分10
6秒前
6秒前
6秒前
牧之发布了新的文献求助10
6秒前
7秒前
馆长应助liu采纳,获得30
7秒前
科研通AI5应助飞飞采纳,获得10
7秒前
8秒前
8秒前
8秒前
无花果应助负责石头采纳,获得10
8秒前
刘厚麟发布了新的文献求助10
8秒前
Achen发布了新的文献求助10
9秒前
MM发布了新的文献求助10
10秒前
10秒前
李爱国应助风趣的觅山采纳,获得10
10秒前
硕小牛完成签到,获得积分10
10秒前
guangshuang发布了新的文献求助10
10秒前
LL完成签到,获得积分10
11秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646