亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Classification of electromyographic hand gesture signals using machine learning techniques

计算机科学 人工智能 稳健性(进化) 模式识别(心理学) 卷积神经网络 分类器(UML) 语音识别 试验数据 手势 手势识别 隐马尔可夫模型 机器学习 生物化学 基因 化学 程序设计语言
作者
Guangyu Jia,Hak‐Keung Lam,Junkai Liao,Rong Wang
出处
期刊:Neurocomputing [Elsevier]
卷期号:401: 236-248 被引量:48
标识
DOI:10.1016/j.neucom.2020.03.009
摘要

The electromyogram (EMG) signals from an individual’s muscles can reflect the biomechanics of human movement. The accurate classification of individual and combined finger movements using surface EMG signals is able to support many applications such as dexterous prosthetic hand control. The existing research of EMG-based hand gesture classification faces the challenges of inaccurate classification, insufficient generalization ability and weak robustness. To address these problems, this paper proposes a deep learning model that combines convolutional auto-encoder and convolutional neural network (CAE+CNN) to classify an EMG dataset consisting of 10 classes of hand gestures. The proposed method shrinks the inputs into a smaller latent space representation using CAE and the resultant compressed features are served as inputs of CNN, which reduces the redundancy of EMG signals and improves the classification accuracy and training efficiency. Besides, to enhance the robustness and generalization ability for classification, a data processing approach is proposed which combines the windowing method and majority voting of the obtained results from the classifier. In addition, comprehensive comparative study is carried out with 8 widely applied and state-of-the-art classifiers in terms of classification accuracy, robustness subject to noise and statistical analysis (sensitivity, specificity, precision, F1 Score and Matthews correlation coefficient). The results demonstrates that the integration of windowing method, CAE+CNN and majority voting achieves the best performance (99.38% test accuracy for the data without adding noise, which is 3.78% higher than the best classifier used for comparison), strongest robustness (achieved 98.13% test accuracy when Gaussian noise of level 1e-5 is added to the raw dataset, which is 4.07% higher than the best classifier used for comparison) and statistical properties compared to other classifiers, which shows the potential for healthcare applications such as movement intention detection and dexterous prostheses control.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HY发布了新的文献求助20
3秒前
7秒前
面包战士发布了新的文献求助10
12秒前
脑洞疼应助面包战士采纳,获得10
18秒前
23秒前
lmgj发布了新的文献求助10
27秒前
李爱国应助zyw采纳,获得10
35秒前
45秒前
zyw发布了新的文献求助10
49秒前
慕青应助科研通管家采纳,获得10
54秒前
SciGPT应助科研通管家采纳,获得30
54秒前
称心的砖家完成签到,获得积分10
1分钟前
1分钟前
xinqing发布了新的文献求助10
1分钟前
1分钟前
丘比特应助zyw采纳,获得10
1分钟前
1分钟前
xinqing完成签到,获得积分20
1分钟前
1分钟前
英勇初曼发布了新的文献求助10
1分钟前
酷波er应助xinqing采纳,获得10
1分钟前
John完成签到,获得积分10
1分钟前
耶格尔完成签到 ,获得积分0
1分钟前
2分钟前
toto发布了新的文献求助10
2分钟前
toto完成签到,获得积分10
2分钟前
李健应助科研通管家采纳,获得10
2分钟前
2分钟前
宇宙无敌狂暴龙血战士完成签到,获得积分10
3分钟前
3分钟前
123发布了新的文献求助10
3分钟前
王一一完成签到 ,获得积分10
3分钟前
热心平萱发布了新的文献求助10
3分钟前
科研通AI6.2应助英勇初曼采纳,获得10
3分钟前
hdd完成签到,获得积分10
3分钟前
小彭陪小崔读个研完成签到 ,获得积分10
4分钟前
iex777完成签到 ,获得积分10
4分钟前
小二郎应助南湾不夏采纳,获得10
4分钟前
Johan完成签到 ,获得积分10
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
The Dance of Butch/Femme: The Complementarity and Autonomy of Lesbian Gender Identity 500
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
Differentiation Between Social Groups: Studies in the Social Psychology of Intergroup Relations 350
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5875756
求助须知:如何正确求助?哪些是违规求助? 6520795
关于积分的说明 15677607
捐赠科研通 4993843
什么是DOI,文献DOI怎么找? 2691645
邀请新用户注册赠送积分活动 1633853
关于科研通互助平台的介绍 1591507