Classification of electromyographic hand gesture signals using machine learning techniques

计算机科学 人工智能 稳健性(进化) 模式识别(心理学) 卷积神经网络 分类器(UML) 语音识别 试验数据 手势 手势识别 隐马尔可夫模型 机器学习 生物化学 基因 化学 程序设计语言
作者
Guangyu Jia,Hak‐Keung Lam,Junkai Liao,Rong Wang
出处
期刊:Neurocomputing [Elsevier]
卷期号:401: 236-248 被引量:48
标识
DOI:10.1016/j.neucom.2020.03.009
摘要

The electromyogram (EMG) signals from an individual’s muscles can reflect the biomechanics of human movement. The accurate classification of individual and combined finger movements using surface EMG signals is able to support many applications such as dexterous prosthetic hand control. The existing research of EMG-based hand gesture classification faces the challenges of inaccurate classification, insufficient generalization ability and weak robustness. To address these problems, this paper proposes a deep learning model that combines convolutional auto-encoder and convolutional neural network (CAE+CNN) to classify an EMG dataset consisting of 10 classes of hand gestures. The proposed method shrinks the inputs into a smaller latent space representation using CAE and the resultant compressed features are served as inputs of CNN, which reduces the redundancy of EMG signals and improves the classification accuracy and training efficiency. Besides, to enhance the robustness and generalization ability for classification, a data processing approach is proposed which combines the windowing method and majority voting of the obtained results from the classifier. In addition, comprehensive comparative study is carried out with 8 widely applied and state-of-the-art classifiers in terms of classification accuracy, robustness subject to noise and statistical analysis (sensitivity, specificity, precision, F1 Score and Matthews correlation coefficient). The results demonstrates that the integration of windowing method, CAE+CNN and majority voting achieves the best performance (99.38% test accuracy for the data without adding noise, which is 3.78% higher than the best classifier used for comparison), strongest robustness (achieved 98.13% test accuracy when Gaussian noise of level 1e-5 is added to the raw dataset, which is 4.07% higher than the best classifier used for comparison) and statistical properties compared to other classifiers, which shows the potential for healthcare applications such as movement intention detection and dexterous prostheses control.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一朵白云完成签到,获得积分10
刚刚
342396102发布了新的文献求助10
刚刚
Pony发布了新的文献求助10
2秒前
大胆盼兰发布了新的文献求助10
4秒前
yin发布了新的文献求助10
5秒前
橘子发布了新的文献求助10
5秒前
5秒前
5秒前
小马哥完成签到,获得积分10
6秒前
汉堡包应助YA采纳,获得10
6秒前
7秒前
田心雨完成签到 ,获得积分10
7秒前
8秒前
Rainy发布了新的文献求助10
8秒前
honda完成签到,获得积分10
8秒前
8秒前
8秒前
热情笑旋完成签到,获得积分10
9秒前
277应助胡房晓采纳,获得30
9秒前
红枣桂圆国际完成签到,获得积分10
9秒前
10秒前
阳光青烟发布了新的文献求助10
11秒前
277应助神勇芷巧采纳,获得10
11秒前
蓝兰发布了新的文献求助10
11秒前
小白完成签到 ,获得积分10
12秒前
大模型应助342396102采纳,获得10
12秒前
方正发布了新的文献求助10
12秒前
彭于彦祖应助111采纳,获得30
13秒前
13秒前
HM完成签到,获得积分20
14秒前
GeoY完成签到,获得积分10
14秒前
希望天下0贩的0应助sye采纳,获得30
15秒前
Echo发布了新的文献求助10
16秒前
大个应助赵立双采纳,获得10
17秒前
科研小子完成签到 ,获得积分10
17秒前
现实马里奥完成签到,获得积分10
17秒前
17秒前
爱上人家四月完成签到,获得积分10
19秒前
七米日光发布了新的文献求助10
19秒前
蓝兰完成签到,获得积分20
19秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3301341
求助须知:如何正确求助?哪些是违规求助? 2936061
关于积分的说明 8475819
捐赠科研通 2609853
什么是DOI,文献DOI怎么找? 1424856
科研通“疑难数据库(出版商)”最低求助积分说明 662191
邀请新用户注册赠送积分活动 646202