Random Path Selection for Continual Learning

计算机科学 强化学习 人工智能 机器学习 路径(计算) 遗忘 架空(工程) 选择(遗传算法) 新颖性 哲学 语言学 神学 程序设计语言 操作系统
作者
Jathushan Rajasegaran,Munawar Hayat,Salman Khan,Fahad Shahbaz Khan,Ling Shao
链接
摘要

Incremental life-long learning is a main challenge towards the long-standing goal of Artificial General Intelligence. In real-life settings, learning tasks arrive in a sequence and machine learning models must continually learn to increment already acquired knowledge. The existing incremental learning approaches fall well below the state-of-the-art cumulative models that use all training classes at once. In this paper, we propose a random path selection algorithm, called RPS-Net, that progressively chooses optimal paths for the new tasks while encouraging parameter sharing and reuse. Our approach avoids the overhead introduced by computationally expensive evolutionary and reinforcement learning based path selection strategies while achieving considerable performance gains. As an added novelty, the proposed model integrates knowledge distillation and retrospection along with the path selection strategy to overcome catastrophic forgetting. In order to maintain an equilibrium between previous and newly acquired knowledge, we propose a simple controller to dynamically balance the model plasticity. Through extensive experiments, we demonstrate that the proposed method surpasses the state-of-the-art performance on incremental learning and by utilizing parallel computation this method can run in constant time with nearly the same efficiency as a conventional deep convolutional neural network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MADKAI发布了新的文献求助10
刚刚
乐乐应助燕尔蓝采纳,获得10
1秒前
JamesPei应助柔弱煎饼采纳,获得30
1秒前
习习应助甜甜的向卉采纳,获得10
1秒前
xunxunmimi发布了新的文献求助10
1秒前
1秒前
温暖哈密瓜完成签到 ,获得积分10
1秒前
2秒前
2秒前
2秒前
聆听雨完成签到,获得积分10
3秒前
Ymj完成签到,获得积分10
3秒前
怡然若雁完成签到,获得积分10
3秒前
3秒前
坚强亦丝应助游大达采纳,获得10
4秒前
@小小搬砖瑞完成签到,获得积分10
4秒前
怡然若雁发布了新的文献求助10
6秒前
coc关注了科研通微信公众号
6秒前
双双完成签到,获得积分10
6秒前
瑶625发布了新的文献求助10
6秒前
Strike完成签到,获得积分10
7秒前
调皮纸飞机完成签到,获得积分20
7秒前
董小李完成签到,获得积分10
7秒前
7秒前
研友_8yN60L完成签到,获得积分10
8秒前
zhanzhanzhan发布了新的文献求助10
8秒前
科研通AI5应助自爱悠然采纳,获得10
8秒前
8秒前
Accept应助胡枝子采纳,获得30
8秒前
Strike发布了新的文献求助10
9秒前
Rsoup完成签到,获得积分10
9秒前
10秒前
zz发布了新的文献求助10
10秒前
sfzz完成签到,获得积分10
10秒前
10秒前
如履平川完成签到 ,获得积分10
10秒前
大个应助阳光海云采纳,获得50
10秒前
10秒前
新青年完成签到,获得积分0
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740