Performance of deep neural network-based artificial intelligence method in diabetic retinopathy screening: a systematic review and meta-analysis of diagnostic test accuracy

人工智能 荟萃分析 糖尿病性视网膜病变 科克伦图书馆 接收机工作特性 人工神经网络 医学 计算机科学 机器学习 卷积神经网络 分级(工程) 内科学 糖尿病 工程类 内分泌学 土木工程
作者
Shirui Wang,Yuelun Zhang,Shubin Lei,Huijuan Zhu,Jianqiang Li,Qing Wang,Ji-Jiang Yang,Shi Chen,Hui Pan
出处
期刊:European journal of endocrinology [Bioscientifica]
卷期号:183 (1): 41-49 被引量:35
标识
DOI:10.1530/eje-19-0968
摘要

Automatic diabetic retinopathy screening system based on neural networks has been used to detect diabetic retinopathy (DR). However, there is no quantitative synthesis of performance of these methods. We aimed to estimate the sensitivity and specificity of neural networks in DR grading.Medline, Embase, IEEE Xplore, and Cochrane Library were searched up to 23 July 2019. Studies that evaluated performance of neural networks in detection of moderate or worse DR or diabetic macular edema using retinal fundus images with ophthalmologists' judgment as reference standard were included. Two reviewers extracted data independently. Risk of bias of eligible studies was assessed using QUDAS-2 tool.Twenty-four studies involving 235 235 subjects were included. Quantitative random-effects meta-analysis using the Rutter and Gatsonis hierarchical summary receiver operating characteristics (HSROC) model revealed a pooled sensitivity of 91.9% (95% CI: 89.6% to 94.3%) and specificity of 91.3% (95% CI: 89.0% to 93.5%). Subgroup analyses and meta-regression did not provide any statistically significant findings for the heterogeneous diagnostic accuracy in studies with different image resolutions, sample sizes of training sets, architecture of convolutional neural networks, or diagnostic criteria.State-of-the-art neural networks could effectively detect clinical significant DR. To further improve diagnostic accuracy of neural networks, researchers might need to develop new algorithms rather than simply enlarge sample sizes of training sets or optimize image quality.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
周老八发布了新的文献求助10
刚刚
刚刚
小猫不再冷酷关注了科研通微信公众号
1秒前
李健的小迷弟应助悠然采纳,获得10
1秒前
小豆子完成签到 ,获得积分10
1秒前
ivy0425完成签到,获得积分10
1秒前
2秒前
莹莹CY完成签到,获得积分10
2秒前
洁净的依柔完成签到,获得积分10
2秒前
hsgfiw完成签到,获得积分10
2秒前
sun完成签到,获得积分10
3秒前
彭于晏应助小宁软糖采纳,获得10
3秒前
阔达的梨愁完成签到 ,获得积分10
3秒前
123完成签到 ,获得积分10
4秒前
4秒前
trayheep发布了新的文献求助10
4秒前
艾斯完成签到,获得积分10
4秒前
4秒前
4秒前
故意的寒安完成签到,获得积分10
4秒前
丘比特应助行萱采纳,获得10
4秒前
终于花开日完成签到 ,获得积分10
4秒前
北长雨安完成签到,获得积分10
5秒前
5秒前
小高同学发布了新的文献求助10
6秒前
周老八完成签到,获得积分10
6秒前
莹莹CY发布了新的文献求助30
6秒前
明亮囧发布了新的文献求助10
7秒前
君君欧发布了新的文献求助10
8秒前
zli完成签到,获得积分10
8秒前
脑洞疼应助孔雀翎采纳,获得10
8秒前
8秒前
zli发布了新的文献求助10
10秒前
努力考博的咸鱼完成签到 ,获得积分10
10秒前
CodeCraft应助小白兔采纳,获得10
10秒前
10秒前
ze发布了新的文献求助10
11秒前
薰硝壤应助七叶采纳,获得50
11秒前
彤航发布了新的文献求助10
11秒前
不必要再讨论适合与否完成签到,获得积分0
12秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147351
求助须知:如何正确求助?哪些是违规求助? 2798580
关于积分的说明 7829767
捐赠科研通 2455324
什么是DOI,文献DOI怎么找? 1306666
科研通“疑难数据库(出版商)”最低求助积分说明 627883
版权声明 601567