Performance of deep neural network-based artificial intelligence method in diabetic retinopathy screening: a systematic review and meta-analysis of diagnostic test accuracy

人工智能 荟萃分析 糖尿病性视网膜病变 科克伦图书馆 接收机工作特性 人工神经网络 医学 计算机科学 机器学习 卷积神经网络 分级(工程) 内科学 糖尿病 土木工程 工程类 内分泌学
作者
Shirui Wang,Yuelun Zhang,Shubin Lei,Huijuan Zhu,Jianqiang Li,Qing Wang,Ji‐Jiang Yang,Shi Chen,Hui Pan
出处
期刊:European journal of endocrinology [Oxford University Press]
卷期号:183 (1): 41-49 被引量:40
标识
DOI:10.1530/eje-19-0968
摘要

Automatic diabetic retinopathy screening system based on neural networks has been used to detect diabetic retinopathy (DR). However, there is no quantitative synthesis of performance of these methods. We aimed to estimate the sensitivity and specificity of neural networks in DR grading.Medline, Embase, IEEE Xplore, and Cochrane Library were searched up to 23 July 2019. Studies that evaluated performance of neural networks in detection of moderate or worse DR or diabetic macular edema using retinal fundus images with ophthalmologists' judgment as reference standard were included. Two reviewers extracted data independently. Risk of bias of eligible studies was assessed using QUDAS-2 tool.Twenty-four studies involving 235 235 subjects were included. Quantitative random-effects meta-analysis using the Rutter and Gatsonis hierarchical summary receiver operating characteristics (HSROC) model revealed a pooled sensitivity of 91.9% (95% CI: 89.6% to 94.3%) and specificity of 91.3% (95% CI: 89.0% to 93.5%). Subgroup analyses and meta-regression did not provide any statistically significant findings for the heterogeneous diagnostic accuracy in studies with different image resolutions, sample sizes of training sets, architecture of convolutional neural networks, or diagnostic criteria.State-of-the-art neural networks could effectively detect clinical significant DR. To further improve diagnostic accuracy of neural networks, researchers might need to develop new algorithms rather than simply enlarge sample sizes of training sets or optimize image quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助科研通管家采纳,获得10
刚刚
顾白凡应助科研通管家采纳,获得10
1秒前
球球应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
1秒前
搞怪的又蓝应助Henry采纳,获得10
1秒前
酱子完成签到,获得积分10
1秒前
1秒前
Akim应助1_1采纳,获得10
1秒前
1秒前
FashionBoy应助科研通管家采纳,获得30
1秒前
1秒前
ED应助科研通管家采纳,获得10
1秒前
1秒前
Orange应助科研通管家采纳,获得10
1秒前
1秒前
今年我必胖20斤完成签到,获得积分10
1秒前
2秒前
hhhi发布了新的文献求助10
3秒前
新司机发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
汉堡包应助盼盼采纳,获得10
4秒前
Who1990完成签到,获得积分10
5秒前
水波不兴完成签到,获得积分10
5秒前
欢喜的早晨完成签到,获得积分10
5秒前
6秒前
英俊的铭应助DKW采纳,获得10
6秒前
6秒前
魔幻的盼芙完成签到 ,获得积分10
7秒前
lucifer完成签到,获得积分10
7秒前
zoey发布了新的文献求助10
8秒前
星辰大海应助77采纳,获得10
8秒前
大家好完成签到 ,获得积分10
8秒前
喻紫寒发布了新的文献求助10
10秒前
Gnor发布了新的文献求助10
10秒前
搬砖发布了新的文献求助30
10秒前
diaoyulao发布了新的文献求助30
11秒前
galvin完成签到,获得积分10
11秒前
葛博关注了科研通微信公众号
11秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016787
求助须知:如何正确求助?哪些是违规求助? 3556966
关于积分的说明 11323317
捐赠科研通 3289698
什么是DOI,文献DOI怎么找? 1812525
邀请新用户注册赠送积分活动 888139
科研通“疑难数据库(出版商)”最低求助积分说明 812121