Evolutionary Multiobjective Optimization Driven by Generative Adversarial Networks (GANs)

计算机科学 维数之咒 水准点(测量) 生成语法 进化算法 机器学习 人工智能 对抗制 数学优化 数学 大地测量学 地理
作者
Cheng He,S. Huang,Ran Cheng,Kay Chen Tan,Yaochu Jin
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:51 (6): 3129-3142 被引量:139
标识
DOI:10.1109/tcyb.2020.2985081
摘要

Recently, increasing works have been proposed to drive evolutionary algorithms using machine-learning models. Usually, the performance of such model-based evolutionary algorithms is highly dependent on the training qualities of the adopted models. Since it usually requires a certain amount of data (i.e., the candidate solutions generated by the algorithms) for model training, the performance deteriorates rapidly with the increase of the problem scales due to the curse of dimensionality. To address this issue, we propose a multiobjective evolutionary algorithm driven by the generative adversarial networks (GANs). At each generation of the proposed algorithm, the parent solutions are first classified into real and fake samples to train the GANs; then the offspring solutions are sampled by the trained GANs. Thanks to the powerful generative ability of the GANs, our proposed algorithm is capable of generating promising offspring solutions in high-dimensional decision space with limited training data. The proposed algorithm is tested on ten benchmark problems with up to 200 decision variables. The experimental results on these test problems demonstrate the effectiveness of the proposed algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
左丘如萱发布了新的文献求助30
刚刚
1秒前
果果完成签到,获得积分10
1秒前
2秒前
晓指晴天发布了新的文献求助10
2秒前
菠萝吹雪完成签到,获得积分10
2秒前
liuyanq发布了新的文献求助10
2秒前
NexusExplorer应助头发多多采纳,获得10
2秒前
3秒前
隐形曼青应助研友_方达采纳,获得10
4秒前
4秒前
令狐初之发布了新的文献求助10
6秒前
斯文败类应助机智羞花采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
令狐初之完成签到,获得积分10
11秒前
Hello应助gww采纳,获得10
14秒前
15秒前
15秒前
浮游应助科研通管家采纳,获得10
15秒前
bkagyin应助科研通管家采纳,获得10
15秒前
斯文败类应助科研通管家采纳,获得10
15秒前
李爱国应助科研通管家采纳,获得10
15秒前
隐形曼青应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
Owen应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得50
16秒前
wanci应助科研通管家采纳,获得10
16秒前
完美世界应助科研通管家采纳,获得10
16秒前
JamesPei应助科研通管家采纳,获得10
16秒前
Akim应助科研通管家采纳,获得10
16秒前
李健应助科研通管家采纳,获得10
16秒前
英姑应助科研通管家采纳,获得10
16秒前
盛yyyy完成签到 ,获得积分10
16秒前
华仔应助科研通管家采纳,获得10
16秒前
浮游应助科研通管家采纳,获得10
16秒前
xiao-lei应助科研通管家采纳,获得10
16秒前
roclie发布了新的文献求助10
16秒前
慕青应助ShaLi123采纳,获得10
17秒前
joy完成签到,获得积分10
17秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4585938
求助须知:如何正确求助?哪些是违规求助? 4002681
关于积分的说明 12390812
捐赠科研通 3678747
什么是DOI,文献DOI怎么找? 2027592
邀请新用户注册赠送积分活动 1061082
科研通“疑难数据库(出版商)”最低求助积分说明 947447