Evolutionary Multiobjective Optimization Driven by Generative Adversarial Networks (GANs)

计算机科学 维数之咒 水准点(测量) 生成语法 进化算法 机器学习 人工智能 对抗制 数学优化 数学 大地测量学 地理
作者
Cheng He,S. Huang,Ran Cheng,Kay Chen Tan,Yaochu Jin
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:51 (6): 3129-3142 被引量:139
标识
DOI:10.1109/tcyb.2020.2985081
摘要

Recently, increasing works have been proposed to drive evolutionary algorithms using machine-learning models. Usually, the performance of such model-based evolutionary algorithms is highly dependent on the training qualities of the adopted models. Since it usually requires a certain amount of data (i.e., the candidate solutions generated by the algorithms) for model training, the performance deteriorates rapidly with the increase of the problem scales due to the curse of dimensionality. To address this issue, we propose a multiobjective evolutionary algorithm driven by the generative adversarial networks (GANs). At each generation of the proposed algorithm, the parent solutions are first classified into real and fake samples to train the GANs; then the offspring solutions are sampled by the trained GANs. Thanks to the powerful generative ability of the GANs, our proposed algorithm is capable of generating promising offspring solutions in high-dimensional decision space with limited training data. The proposed algorithm is tested on ten benchmark problems with up to 200 decision variables. The experimental results on these test problems demonstrate the effectiveness of the proposed algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zz完成签到,获得积分20
刚刚
1秒前
2秒前
lmc完成签到,获得积分10
2秒前
2秒前
lin完成签到,获得积分10
2秒前
2秒前
小蘑菇应助zhangpeng采纳,获得10
3秒前
elerain完成签到,获得积分10
4秒前
陶招发布了新的文献求助10
5秒前
FashionBoy应助甜蜜阑悦采纳,获得10
5秒前
FashionBoy应助自觉南风采纳,获得10
5秒前
6秒前
6秒前
Rondab应助PG采纳,获得10
6秒前
6秒前
nuannuan发布了新的文献求助10
7秒前
大神装发布了新的文献求助10
7秒前
白菜发布了新的文献求助10
7秒前
8秒前
8秒前
wangjue完成签到,获得积分10
9秒前
ABC完成签到,获得积分10
9秒前
Chaimengdi发布了新的文献求助10
9秒前
Anovel完成签到,获得积分10
10秒前
whh发布了新的文献求助10
10秒前
国慕山发布了新的文献求助10
10秒前
10秒前
oneeight完成签到,获得积分10
11秒前
11秒前
killler发布了新的文献求助10
11秒前
erhao完成签到,获得积分10
12秒前
Zhenzhen_Shan完成签到,获得积分10
13秒前
13秒前
炙热乌冬面完成签到 ,获得积分20
13秒前
young_lifestyle应助Ruby采纳,获得10
13秒前
14秒前
活泼的草莓完成签到,获得积分10
14秒前
yby发布了新的文献求助10
14秒前
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Treatise on Geochemistry 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954916
求助须知:如何正确求助?哪些是违规求助? 3501031
关于积分的说明 11101644
捐赠科研通 3231451
什么是DOI,文献DOI怎么找? 1786425
邀请新用户注册赠送积分活动 870050
科研通“疑难数据库(出版商)”最低求助积分说明 801785