Intelligent models to predict the indoor thermal sensation and thermal demand in steady state based on occupants’ skin temperature

热感觉 热舒适性 热的 环境科学 皮肤温度 工作温度 平均绝对误差 统计 模拟 计算机科学 工程类 数学 均方误差 气象学 地理 生物医学工程
作者
Behrouz Salehi,Abdul Hamid Ghanbaran,Mehdi Maerefat
出处
期刊:Building and Environment [Elsevier]
卷期号:169: 106579-106579 被引量:44
标识
DOI:10.1016/j.buildenv.2019.106579
摘要

The correct prediction of thermal sensation is an important factor in energy consumption and satisfaction of occupants. This study examined the effectiveness of six different intelligent approaches for predicting thermal sensation and demand using body temperature data of 615 experiments with an exposure time of 3 h in a controlled office place. At each hour, the temperature of 14 uncovered body points was measured and finally, 1845 temperature data points were extracted. The exposure time had a significant effect on the thermal sensation and insufficient impact on the body temperature. Among all measured temperature data points, four points including middle of forehead (MFH), left cheek (LC), Nose (No), and left hand (LH), were taken as models' inputs. The results indicated that the Gaussian Process Regression (GPR) method offers the best outcomes in prediction of thermal sensation with mean absolute error (MAE) of 0.571 and R2 of 0.84 for the test data points. The MAE and R2 obtained by this model were 0.95 and 0.69, respectively, suggesting that GPR is more accurate and reliable than well-known method PMV. Regarding thermal demand, it was found that the accuracies of the GPR and PMV models were 86% and 69%, respectively. Therefore, the GPR approach is capable of predicting outstanding results for thermal demand compared to the existing models on the basis of environmental factors such as PMV Overall, the present study suggested that intelligent methods based on occupants’ physiological factors estimate the thermal sensation and demand better than available standard methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
粗犷的问夏完成签到,获得积分10
1秒前
知行合一完成签到 ,获得积分10
2秒前
2秒前
3秒前
李爱国应助晨曦采纳,获得10
4秒前
0128lun发布了新的文献求助10
4秒前
phd发布了新的文献求助10
5秒前
君无名完成签到 ,获得积分10
5秒前
经年发布了新的文献求助10
5秒前
QXR完成签到,获得积分10
6秒前
豆dou完成签到,获得积分10
6秒前
Dddd发布了新的文献求助10
6秒前
HCl完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
9秒前
9秒前
Hollen完成签到 ,获得积分10
10秒前
慕青应助学术蠕虫采纳,获得10
11秒前
11秒前
叶子发布了新的文献求助10
12秒前
orangel完成签到,获得积分10
13秒前
半壶月色半边天完成签到 ,获得积分10
14秒前
tmpstlml发布了新的文献求助10
14秒前
15秒前
15秒前
不安饼干完成签到 ,获得积分10
17秒前
活泼的飞鸟完成签到,获得积分10
17秒前
18秒前
xuyun发布了新的文献求助10
18秒前
18秒前
zzcres完成签到,获得积分10
20秒前
eeeee完成签到 ,获得积分10
20秒前
乐观德地完成签到,获得积分10
21秒前
大个应助yf_zhu采纳,获得10
21秒前
llk发布了新的文献求助10
22秒前
一只大肥猫完成签到,获得积分10
22秒前
22秒前
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808