Intelligent models to predict the indoor thermal sensation and thermal demand in steady state based on occupants’ skin temperature

热感觉 热舒适性 热的 环境科学 皮肤温度 工作温度 平均绝对误差 统计 模拟 计算机科学 工程类 数学 均方误差 气象学 地理 生物医学工程
作者
Behrouz Salehi,Abdul Hamid Ghanbaran,Mehdi Maerefat
出处
期刊:Building and Environment [Elsevier]
卷期号:169: 106579-106579 被引量:44
标识
DOI:10.1016/j.buildenv.2019.106579
摘要

The correct prediction of thermal sensation is an important factor in energy consumption and satisfaction of occupants. This study examined the effectiveness of six different intelligent approaches for predicting thermal sensation and demand using body temperature data of 615 experiments with an exposure time of 3 h in a controlled office place. At each hour, the temperature of 14 uncovered body points was measured and finally, 1845 temperature data points were extracted. The exposure time had a significant effect on the thermal sensation and insufficient impact on the body temperature. Among all measured temperature data points, four points including middle of forehead (MFH), left cheek (LC), Nose (No), and left hand (LH), were taken as models' inputs. The results indicated that the Gaussian Process Regression (GPR) method offers the best outcomes in prediction of thermal sensation with mean absolute error (MAE) of 0.571 and R2 of 0.84 for the test data points. The MAE and R2 obtained by this model were 0.95 and 0.69, respectively, suggesting that GPR is more accurate and reliable than well-known method PMV. Regarding thermal demand, it was found that the accuracies of the GPR and PMV models were 86% and 69%, respectively. Therefore, the GPR approach is capable of predicting outstanding results for thermal demand compared to the existing models on the basis of environmental factors such as PMV Overall, the present study suggested that intelligent methods based on occupants’ physiological factors estimate the thermal sensation and demand better than available standard methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pufanlg完成签到,获得积分10
1秒前
精明云朵完成签到 ,获得积分10
1秒前
魔幻若血完成签到,获得积分10
3秒前
沉静智宸完成签到 ,获得积分10
3秒前
松松包完成签到,获得积分10
4秒前
上下发布了新的文献求助30
4秒前
东郭谷雪完成签到,获得积分10
4秒前
159完成签到,获得积分10
5秒前
南桥完成签到 ,获得积分10
5秒前
11111完成签到,获得积分10
5秒前
6秒前
huan完成签到,获得积分10
6秒前
7秒前
不配.应助思思采纳,获得30
7秒前
8秒前
ding应助呵呵呵悦采纳,获得10
8秒前
聪明的宛菡完成签到,获得积分10
8秒前
9秒前
野性的采枫完成签到,获得积分10
10秒前
lkl完成签到,获得积分10
10秒前
Ron完成签到,获得积分10
11秒前
wuwa完成签到,获得积分10
11秒前
11秒前
秋海棠完成签到,获得积分10
11秒前
114514完成签到 ,获得积分10
11秒前
12秒前
科研小白完成签到,获得积分10
12秒前
杪夏二八完成签到 ,获得积分10
13秒前
流浪发布了新的文献求助10
13秒前
大气乐儿完成签到,获得积分10
13秒前
111发布了新的文献求助10
14秒前
14秒前
CodeCraft应助崛起之邦采纳,获得30
14秒前
南桥完成签到 ,获得积分10
15秒前
zhuge完成签到,获得积分10
15秒前
陆陆完成签到,获得积分10
16秒前
空溟fever完成签到,获得积分10
16秒前
crrrr发布了新的文献求助10
16秒前
切奇莉亚发布了新的文献求助10
16秒前
ALMT完成签到,获得积分10
17秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147003
求助须知:如何正确求助?哪些是违规求助? 2798336
关于积分的说明 7827807
捐赠科研通 2454956
什么是DOI,文献DOI怎么找? 1306492
科研通“疑难数据库(出版商)”最低求助积分说明 627808
版权声明 601565