Intelligent models to predict the indoor thermal sensation and thermal demand in steady state based on occupants’ skin temperature

热感觉 热舒适性 热的 环境科学 皮肤温度 工作温度 平均绝对误差 统计 模拟 计算机科学 工程类 数学 均方误差 气象学 地理 生物医学工程
作者
Behrouz Salehi,Abdul Hamid Ghanbaran,Mehdi Maerefat
出处
期刊:Building and Environment [Elsevier BV]
卷期号:169: 106579-106579 被引量:44
标识
DOI:10.1016/j.buildenv.2019.106579
摘要

The correct prediction of thermal sensation is an important factor in energy consumption and satisfaction of occupants. This study examined the effectiveness of six different intelligent approaches for predicting thermal sensation and demand using body temperature data of 615 experiments with an exposure time of 3 h in a controlled office place. At each hour, the temperature of 14 uncovered body points was measured and finally, 1845 temperature data points were extracted. The exposure time had a significant effect on the thermal sensation and insufficient impact on the body temperature. Among all measured temperature data points, four points including middle of forehead (MFH), left cheek (LC), Nose (No), and left hand (LH), were taken as models' inputs. The results indicated that the Gaussian Process Regression (GPR) method offers the best outcomes in prediction of thermal sensation with mean absolute error (MAE) of 0.571 and R2 of 0.84 for the test data points. The MAE and R2 obtained by this model were 0.95 and 0.69, respectively, suggesting that GPR is more accurate and reliable than well-known method PMV. Regarding thermal demand, it was found that the accuracies of the GPR and PMV models were 86% and 69%, respectively. Therefore, the GPR approach is capable of predicting outstanding results for thermal demand compared to the existing models on the basis of environmental factors such as PMV Overall, the present study suggested that intelligent methods based on occupants’ physiological factors estimate the thermal sensation and demand better than available standard methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助jjj采纳,获得10
刚刚
刚刚
Advance.Cheng完成签到,获得积分10
刚刚
学术垃圾完成签到,获得积分10
1秒前
1秒前
yar应助生动的初柳采纳,获得10
1秒前
源源元发布了新的文献求助10
1秒前
2秒前
黎笙完成签到,获得积分10
2秒前
壮观的擎发布了新的文献求助10
2秒前
3秒前
杨大泡泡完成签到 ,获得积分10
3秒前
drywell发布了新的文献求助10
3秒前
所所应助许十五采纳,获得10
3秒前
MnO2fff完成签到,获得积分10
3秒前
LEMONS应助袁小圆采纳,获得10
4秒前
芋头cc完成签到,获得积分10
4秒前
4秒前
ycx完成签到,获得积分20
4秒前
5秒前
西灵壹发布了新的文献求助10
5秒前
机灵冬灵发布了新的文献求助10
5秒前
勤劳的小牛蛙应助hdbys采纳,获得10
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
Annora完成签到,获得积分10
6秒前
老默完成签到,获得积分10
6秒前
7秒前
zero完成签到 ,获得积分10
7秒前
夜雨声烦完成签到,获得积分20
8秒前
可爱的函函应助Chaimengdi采纳,获得10
8秒前
woollen2022发布了新的文献求助10
10秒前
10秒前
卡卡可可完成签到,获得积分10
10秒前
10秒前
暖暖完成签到,获得积分10
10秒前
linlin完成签到,获得积分10
11秒前
zhxs发布了新的文献求助10
11秒前
ABC发布了新的文献求助10
12秒前
甜蜜阑悦发布了新的文献求助10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Treatise on Geochemistry 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954916
求助须知:如何正确求助?哪些是违规求助? 3501031
关于积分的说明 11101644
捐赠科研通 3231451
什么是DOI,文献DOI怎么找? 1786425
邀请新用户注册赠送积分活动 870050
科研通“疑难数据库(出版商)”最低求助积分说明 801785