计算机科学
棱锥(几何)
特征(语言学)
人工智能
推论
架空(工程)
滤波器(信号处理)
模式识别(心理学)
对象(语法)
编码(集合论)
特征学习
目标检测
代表(政治)
计算机视觉
数学
操作系统
哲学
政治
语言学
集合(抽象数据类型)
程序设计语言
法学
政治学
几何学
作者
Songtao Liu,Di Huang,Yunhong Wang
出处
期刊:Cornell University - arXiv
日期:2019-01-01
被引量:381
标识
DOI:10.48550/arxiv.1911.09516
摘要
Pyramidal feature representation is the common practice to address the challenge of scale variation in object detection. However, the inconsistency across different feature scales is a primary limitation for the single-shot detectors based on feature pyramid. In this work, we propose a novel and data driven strategy for pyramidal feature fusion, referred to as adaptively spatial feature fusion (ASFF). It learns the way to spatially filter conflictive information to suppress the inconsistency, thus improving the scale-invariance of features, and introduces nearly free inference overhead. With the ASFF strategy and a solid baseline of YOLOv3, we achieve the best speed-accuracy trade-off on the MS COCO dataset, reporting 38.1% AP at 60 FPS, 42.4% AP at 45 FPS and 43.9% AP at 29 FPS. The code is available at https://github.com/ruinmessi/ASFF
科研通智能强力驱动
Strongly Powered by AbleSci AI