Deep Learning-Based Measurement of Total Plaque Area in B-Mode Ultrasound Images

皮尔逊积矩相关系数 分割 相关系数 人工智能 超声波 变异系数 模式识别(心理学) 核医学 计算机科学 医学 数学 放射科 统计 机器学习
作者
Ran Zhou,Fumin Guo,Mahmoud Reza Azarpazhooh,Samineh Hashemi,Xinyao Cheng,J. David Spence,Mingyue Ding,Aaron Fenster
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:25 (8): 2967-2977 被引量:62
标识
DOI:10.1109/jbhi.2021.3060163
摘要

Measurement of total-plaque-area (TPA) is important for determining long term risk for stroke and monitoring carotid plaque progression. Since delineation of carotid plaques is required, a deep learning method can provide automatic plaque segmentations and TPA measurements; however, it requires large datasets and manual annotations for training with unknown performance on new datasets. A UNet++ ensemble algorithm was proposed to segment plaques from 2D carotid ultrasound images, trained on three small datasets (n = 33, 33, 34 subjects) and tested on 44 subjects from the SPARC dataset (n = 144, London, Canada). The ensemble was also trained on the entire SPARC dataset and tested with a different dataset (n = 497, Zhongnan Hospital, China). Algorithm and manual segmentations were compared using Dice-similarity-coefficient (DSC), and TPAs were compared using the difference (ΔTPA), Pearson correlation coefficient (r) and Bland-Altman analyses. Segmentation variability was determined using the intra-class correlation coefficient (ICC) and coefficient-of-variation (CoV). For 44 SPARC subjects, algorithm DSC was 83.3-85.7%, and algorithm TPAs were strongly correlated (r = 0.985-0.988; p <; 0.001) with manual results with marginal biases (0.73-6.75) mm$^2$ using the three training datasets. Algorithm ICC for TPAs (ICC = 0.996) was similar to intra- and inter-observer manual results (ICC = 0.977, 0.995). Algorithm CoV = 6.98% for plaque areas was smaller than the inter-observer manual CoV (7.54%). For the Zhongnan dataset, DSC was 88.6% algorithm and manual TPAs were strongly correlated (r = 0.972, p <; 0.001) with ΔTPA = -0.44±4.05 mm$^2$ and ICC = 0.985. The proposed algorithm trained on small datasets and segmented a different dataset without retraining with accuracy and precision that may be useful clinically and for research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ao发布了新的文献求助10
刚刚
浮游应助草木采纳,获得10
1秒前
陈杰发布了新的文献求助10
2秒前
Criminology34应助宋佳荟采纳,获得10
3秒前
CipherSage应助的卢小马采纳,获得10
3秒前
dddnnn发布了新的文献求助10
3秒前
活泼的石头完成签到,获得积分10
4秒前
可爱的函函应助发文必过采纳,获得10
5秒前
5秒前
魔幻的心情完成签到,获得积分10
6秒前
李明完成签到,获得积分10
7秒前
8秒前
9秒前
9秒前
na发布了新的文献求助10
10秒前
Baili发布了新的文献求助10
10秒前
周文丽发布了新的文献求助10
11秒前
12秒前
12秒前
123完成签到,获得积分20
13秒前
yzq完成签到 ,获得积分10
13秒前
dddnnn完成签到,获得积分10
13秒前
15秒前
16秒前
16秒前
鹤轩完成签到,获得积分20
17秒前
小马甲应助一汪无前采纳,获得10
17秒前
17秒前
三腔二囊管完成签到,获得积分10
17秒前
19秒前
19秒前
19秒前
xy发布了新的文献求助10
20秒前
sdysdbd完成签到,获得积分10
21秒前
默幻弦完成签到,获得积分10
21秒前
ding应助dddd采纳,获得10
21秒前
liwei发布了新的文献求助10
22秒前
duonicola完成签到,获得积分10
22秒前
123发布了新的文献求助10
22秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125011
求助须知:如何正确求助?哪些是违规求助? 4329012
关于积分的说明 13489539
捐赠科研通 4163648
什么是DOI,文献DOI怎么找? 2282463
邀请新用户注册赠送积分活动 1283623
关于科研通互助平台的介绍 1222905