Deep Learning-Based Measurement of Total Plaque Area in B-Mode Ultrasound Images

皮尔逊积矩相关系数 分割 相关系数 人工智能 超声波 变异系数 模式识别(心理学) 核医学 计算机科学 医学
作者
Ran Zhou,Fumin Guo,Farzaneh A. Sorond,Samineh Hashemi,Xinyao Cheng,J. David Spence,Mingyue Ding,Aaron Fenster
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:25 (8): 2967-2977 被引量:12
标识
DOI:10.1109/jbhi.2021.3060163
摘要

Measurement of total-plaque-area (TPA) is important for determining long term risk for stroke and monitoring carotid plaque progression. Since delineation of carotid plaques is required, a deep learning method can provide automatic plaque segmentations and TPA measurements; however, it requires large datasets and manual annotations for training with unknown performance on new datasets. A UNet++ ensemble algorithm was proposed to segment plaques from 2D carotid ultrasound images, trained on three small datasets (n = 33, 33, 34 subjects) and tested on 44 subjects from the SPARC dataset (n = 144, London, Canada). The ensemble was also trained on the entire SPARC dataset and tested with a different dataset (n = 497, Zhongnan Hospital, China). Algorithm and manual segmentations were compared using Dice-similarity-coefficient (DSC), and TPAs were compared using the difference (ΔTPA), Pearson correlation coefficient (r) and Bland-Altman analyses. Segmentation variability was determined using the intra-class correlation coefficient (ICC) and coefficient-of-variation (CoV). For 44 SPARC subjects, algorithm DSC was 83.3-85.7%, and algorithm TPAs were strongly correlated (r = 0.985-0.988; p <; 0.001) with manual results with marginal biases (0.73-6.75) mm$^2$ using the three training datasets. Algorithm ICC for TPAs (ICC = 0.996) was similar to intra- and inter-observer manual results (ICC = 0.977, 0.995). Algorithm CoV = 6.98% for plaque areas was smaller than the inter-observer manual CoV (7.54%). For the Zhongnan dataset, DSC was 88.6% algorithm and manual TPAs were strongly correlated (r = 0.972, p <; 0.001) with ΔTPA = -0.44±4.05 mm$^2$ and ICC = 0.985. The proposed algorithm trained on small datasets and segmented a different dataset without retraining with accuracy and precision that may be useful clinically and for research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
舒适怀寒完成签到 ,获得积分10
3秒前
miao应助孙淼采纳,获得20
4秒前
小马甲应助孙淼采纳,获得10
4秒前
9秒前
Jiatu_Li发布了新的文献求助10
9秒前
英吉利25发布了新的文献求助10
13秒前
15秒前
16秒前
CodeCraft应助zzydada采纳,获得20
17秒前
yangL完成签到,获得积分10
17秒前
18秒前
充电宝应助科研通管家采纳,获得10
18秒前
华仔应助科研通管家采纳,获得10
18秒前
SciGPT应助科研通管家采纳,获得10
18秒前
共享精神应助科研通管家采纳,获得10
18秒前
顾矜应助科研通管家采纳,获得10
18秒前
小二郎应助科研通管家采纳,获得10
19秒前
852应助科研通管家采纳,获得10
19秒前
传奇3应助科研通管家采纳,获得10
19秒前
小蘑菇应助科研通管家采纳,获得10
19秒前
乐乐应助科研通管家采纳,获得10
19秒前
19秒前
Hello应助科研通管家采纳,获得10
19秒前
彭于晏应助科研通管家采纳,获得10
19秒前
汉堡包应助科研通管家采纳,获得10
19秒前
爆米花应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
19秒前
FashionBoy应助科研通管家采纳,获得10
19秒前
李爱国应助科研通管家采纳,获得50
19秒前
哈哈哈哈发布了新的文献求助10
20秒前
二十又澪完成签到,获得积分10
20秒前
21秒前
yangL发布了新的文献求助10
21秒前
千跃完成签到,获得积分10
23秒前
阿甲发布了新的文献求助10
23秒前
24秒前
隐形曼青应助Jiatu_Li采纳,获得10
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3991903
求助须知:如何正确求助?哪些是违规求助? 3533023
关于积分的说明 11260405
捐赠科研通 3272329
什么是DOI,文献DOI怎么找? 1805693
邀请新用户注册赠送积分活动 882626
科研通“疑难数据库(出版商)”最低求助积分说明 809425