亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Learning-Based Measurement of Total Plaque Area in B-Mode Ultrasound Images

皮尔逊积矩相关系数 分割 相关系数 人工智能 超声波 变异系数 模式识别(心理学) 核医学 计算机科学 医学 数学 放射科 统计 机器学习
作者
Ran Zhou,Fumin Guo,Mahmoud Reza Azarpazhooh,Samineh Hashemi,Xinyao Cheng,J. David Spence,Mingyue Ding,Aaron Fenster
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:25 (8): 2967-2977 被引量:65
标识
DOI:10.1109/jbhi.2021.3060163
摘要

Measurement of total-plaque-area (TPA) is important for determining long term risk for stroke and monitoring carotid plaque progression. Since delineation of carotid plaques is required, a deep learning method can provide automatic plaque segmentations and TPA measurements; however, it requires large datasets and manual annotations for training with unknown performance on new datasets. A UNet++ ensemble algorithm was proposed to segment plaques from 2D carotid ultrasound images, trained on three small datasets (n = 33, 33, 34 subjects) and tested on 44 subjects from the SPARC dataset (n = 144, London, Canada). The ensemble was also trained on the entire SPARC dataset and tested with a different dataset (n = 497, Zhongnan Hospital, China). Algorithm and manual segmentations were compared using Dice-similarity-coefficient (DSC), and TPAs were compared using the difference ( ∆TPA), Pearson correlation coefficient (r) and Bland-Altman analyses. Segmentation variability was determined using the intra-class correlation coefficient (ICC) and coefficient-of-variation (CoV). For 44 SPARC subjects, algorithm DSC was 83.3-85.7%, and algorithm TPAs were strongly correlated (r = 0.985-0.988; p < 0.001) with manual results with marginal biases (0.73-6.75) mm 2 using the three training datasets. Algorithm ICC for TPAs (ICC = 0.996) was similar to intra- and inter-observer manual results (ICC = 0.977, 0.995). Algorithm CoV = 6.98% for plaque areas was smaller than the inter-observer manual CoV (7.54%). For the Zhongnan dataset, DSC was 88.6% algorithm and manual TPAs were strongly correlated (r = 0.972, p < 0.001) with ∆TPA = -0.44 ±4.05 mm 2 and ICC = 0.985. The proposed algorithm trained on small datasets and segmented a different dataset without retraining with accuracy and precision that may be useful clinically and for research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
中華人民共和完成签到,获得积分10
3秒前
4秒前
zzy完成签到 ,获得积分10
8秒前
西吴完成签到 ,获得积分10
9秒前
Hello应助yuanyuan采纳,获得10
9秒前
waomi完成签到,获得积分10
13秒前
共享精神应助Jeff采纳,获得10
16秒前
18秒前
优美紫槐发布了新的文献求助10
24秒前
Jeff完成签到,获得积分10
27秒前
36秒前
40秒前
Jeff发布了新的文献求助10
40秒前
Yin完成签到,获得积分10
43秒前
45秒前
张志超发布了新的文献求助10
49秒前
52秒前
wonder123完成签到,获得积分10
55秒前
幽默赛君完成签到 ,获得积分10
57秒前
58秒前
1分钟前
yuanyuan发布了新的文献求助10
1分钟前
YYY666发布了新的文献求助10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
斯文败类应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
优美紫槐发布了新的文献求助10
1分钟前
Zenia发布了新的文献求助10
1分钟前
鸭子不是鸭完成签到,获得积分20
1分钟前
科研通AI6应助QA采纳,获得50
1分钟前
哎亚完成签到,获得积分10
1分钟前
wu完成签到,获得积分10
1分钟前
1分钟前
喜宝发布了新的文献求助10
1分钟前
传奇3应助yuanyuan采纳,获得10
1分钟前
aliu发布了新的文献求助30
1分钟前
BLUE发布了新的文献求助10
1分钟前
zzz完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599690
求助须知:如何正确求助?哪些是违规求助? 4685406
关于积分的说明 14838430
捐赠科研通 4669946
什么是DOI,文献DOI怎么找? 2538158
邀请新用户注册赠送积分活动 1505527
关于科研通互助平台的介绍 1470898