已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep Learning-Based Measurement of Total Plaque Area in B-Mode Ultrasound Images

皮尔逊积矩相关系数 分割 相关系数 人工智能 超声波 变异系数 模式识别(心理学) 核医学 计算机科学 医学 数学 放射科 统计 机器学习
作者
Ran Zhou,Fumin Guo,Mahmoud Reza Azarpazhooh,Samineh Hashemi,Xinyao Cheng,J. David Spence,Mingyue Ding,Aaron Fenster
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:25 (8): 2967-2977 被引量:62
标识
DOI:10.1109/jbhi.2021.3060163
摘要

Measurement of total-plaque-area (TPA) is important for determining long term risk for stroke and monitoring carotid plaque progression. Since delineation of carotid plaques is required, a deep learning method can provide automatic plaque segmentations and TPA measurements; however, it requires large datasets and manual annotations for training with unknown performance on new datasets. A UNet++ ensemble algorithm was proposed to segment plaques from 2D carotid ultrasound images, trained on three small datasets (n = 33, 33, 34 subjects) and tested on 44 subjects from the SPARC dataset (n = 144, London, Canada). The ensemble was also trained on the entire SPARC dataset and tested with a different dataset (n = 497, Zhongnan Hospital, China). Algorithm and manual segmentations were compared using Dice-similarity-coefficient (DSC), and TPAs were compared using the difference (ΔTPA), Pearson correlation coefficient (r) and Bland-Altman analyses. Segmentation variability was determined using the intra-class correlation coefficient (ICC) and coefficient-of-variation (CoV). For 44 SPARC subjects, algorithm DSC was 83.3-85.7%, and algorithm TPAs were strongly correlated (r = 0.985-0.988; p <; 0.001) with manual results with marginal biases (0.73-6.75) mm$^2$ using the three training datasets. Algorithm ICC for TPAs (ICC = 0.996) was similar to intra- and inter-observer manual results (ICC = 0.977, 0.995). Algorithm CoV = 6.98% for plaque areas was smaller than the inter-observer manual CoV (7.54%). For the Zhongnan dataset, DSC was 88.6% algorithm and manual TPAs were strongly correlated (r = 0.972, p <; 0.001) with ΔTPA = -0.44±4.05 mm$^2$ and ICC = 0.985. The proposed algorithm trained on small datasets and segmented a different dataset without retraining with accuracy and precision that may be useful clinically and for research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cssfsa发布了新的文献求助30
1秒前
打打应助lyx采纳,获得10
3秒前
3秒前
3秒前
6秒前
6秒前
田梦瑶完成签到,获得积分10
7秒前
xy发布了新的文献求助10
8秒前
优秀的莞发布了新的文献求助10
9秒前
11秒前
大方的依霜完成签到,获得积分10
11秒前
淡定访枫完成签到,获得积分20
12秒前
13秒前
Uu完成签到 ,获得积分10
14秒前
NexusExplorer应助自然的乌龟采纳,获得10
15秒前
16秒前
于雷是我发布了新的文献求助10
19秒前
优秀的莞完成签到,获得积分10
19秒前
20秒前
22秒前
蔡小娜完成签到,获得积分20
24秒前
24秒前
WMR发布了新的文献求助10
25秒前
25秒前
蔡小娜发布了新的文献求助10
28秒前
29秒前
30秒前
叽里呱啦完成签到 ,获得积分10
30秒前
ZOE应助clientprogram采纳,获得30
31秒前
31秒前
浮游应助paulmichael采纳,获得10
32秒前
芝士奶酪完成签到 ,获得积分10
32秒前
kimi发布了新的文献求助10
34秒前
Xieyusen发布了新的文献求助10
36秒前
ybheart发布了新的文献求助10
36秒前
左耳钉应助火羊宝采纳,获得10
37秒前
37秒前
kaili完成签到 ,获得积分10
43秒前
欣喜惜海完成签到 ,获得积分10
43秒前
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426055
求助须知:如何正确求助?哪些是违规求助? 4539751
关于积分的说明 14170500
捐赠科研通 4457568
什么是DOI,文献DOI怎么找? 2444607
邀请新用户注册赠送积分活动 1435561
关于科研通互助平台的介绍 1412983