亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Learning-Based Measurement of Total Plaque Area in B-Mode Ultrasound Images

皮尔逊积矩相关系数 分割 相关系数 人工智能 超声波 变异系数 模式识别(心理学) 核医学 计算机科学 医学 数学 放射科 统计 机器学习
作者
Ran Zhou,Fumin Guo,Mahmoud Reza Azarpazhooh,Samineh Hashemi,Xinyao Cheng,J. David Spence,Mingyue Ding,Aaron Fenster
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:25 (8): 2967-2977 被引量:65
标识
DOI:10.1109/jbhi.2021.3060163
摘要

Measurement of total-plaque-area (TPA) is important for determining long term risk for stroke and monitoring carotid plaque progression. Since delineation of carotid plaques is required, a deep learning method can provide automatic plaque segmentations and TPA measurements; however, it requires large datasets and manual annotations for training with unknown performance on new datasets. A UNet++ ensemble algorithm was proposed to segment plaques from 2D carotid ultrasound images, trained on three small datasets (n = 33, 33, 34 subjects) and tested on 44 subjects from the SPARC dataset (n = 144, London, Canada). The ensemble was also trained on the entire SPARC dataset and tested with a different dataset (n = 497, Zhongnan Hospital, China). Algorithm and manual segmentations were compared using Dice-similarity-coefficient (DSC), and TPAs were compared using the difference ( ∆TPA), Pearson correlation coefficient (r) and Bland-Altman analyses. Segmentation variability was determined using the intra-class correlation coefficient (ICC) and coefficient-of-variation (CoV). For 44 SPARC subjects, algorithm DSC was 83.3-85.7%, and algorithm TPAs were strongly correlated (r = 0.985-0.988; p < 0.001) with manual results with marginal biases (0.73-6.75) mm 2 using the three training datasets. Algorithm ICC for TPAs (ICC = 0.996) was similar to intra- and inter-observer manual results (ICC = 0.977, 0.995). Algorithm CoV = 6.98% for plaque areas was smaller than the inter-observer manual CoV (7.54%). For the Zhongnan dataset, DSC was 88.6% algorithm and manual TPAs were strongly correlated (r = 0.972, p < 0.001) with ∆TPA = -0.44 ±4.05 mm 2 and ICC = 0.985. The proposed algorithm trained on small datasets and segmented a different dataset without retraining with accuracy and precision that may be useful clinically and for research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哪位发布了新的文献求助10
刚刚
在水一方完成签到 ,获得积分0
1秒前
桔梗完成签到 ,获得积分10
1秒前
2秒前
小黄是欧皇关注了科研通微信公众号
5秒前
自信的网络完成签到 ,获得积分10
6秒前
哪位完成签到,获得积分10
8秒前
噫吁嚱完成签到 ,获得积分10
8秒前
英姑应助天真的戾采纳,获得20
8秒前
所所应助小飞采纳,获得10
10秒前
小罗完成签到,获得积分20
11秒前
13秒前
14秒前
坚守完成签到 ,获得积分10
15秒前
18秒前
小鱼发布了新的文献求助10
18秒前
19秒前
科研通AI6应助世良采纳,获得10
20秒前
24秒前
万能图书馆应助小飞采纳,获得10
24秒前
灵巧凝莲发布了新的文献求助10
28秒前
张凡完成签到 ,获得积分10
30秒前
zjy完成签到,获得积分10
31秒前
nenoaowu发布了新的文献求助10
34秒前
李健应助刘生采纳,获得10
35秒前
传统的戎完成签到,获得积分10
37秒前
希望天下0贩的0应助小飞采纳,获得10
41秒前
科研通AI6应助ZHANG采纳,获得20
43秒前
43秒前
CipherSage应助nenoaowu采纳,获得10
46秒前
坚定的碧凡完成签到,获得积分10
50秒前
寒生完成签到,获得积分10
53秒前
Fancy完成签到,获得积分10
53秒前
开朗嘉熙完成签到 ,获得积分10
54秒前
55秒前
科研通AI6应助FXe采纳,获得10
55秒前
58秒前
Ava应助小飞采纳,获得10
59秒前
1分钟前
星辰大海应助清蒸深海鱼采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650563
求助须知:如何正确求助?哪些是违规求助? 4781019
关于积分的说明 15052302
捐赠科研通 4809466
什么是DOI,文献DOI怎么找? 2572282
邀请新用户注册赠送积分活动 1528450
关于科研通互助平台的介绍 1487286