亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A diagnostic unified classification model for classifying multi-sized and multi-modal brain graphs using graph alignment.

计算机科学 人工智能 模式识别(心理学) 图形 机器学习 算法 支持向量机 情态动词 分类器(UML)
作者
Abdullah Yalçin,Islem Rekik
出处
期刊:Journal of Neuroscience Methods [Elsevier]
卷期号:348: 109014- 被引量:1
标识
DOI:10.1016/j.jneumeth.2020.109014
摘要

Abstract Background Presence of multimodal brain graphs derived from different neuroimaging modalities is inarguably one of the most critical challenges in building unified classification models that can be trained and tested on any brain graph regardless of its size and the modality it was derived from. Existing methods One solution is to learn a model for each modality independently, which is cumbersome and becomes more time-consuming as the number of modalities increases. Another traditional solution is to build a model inputting multimodal brain graphs for the target prediction task; however, this is only applicable to datasets where all samples have joint neuro-modalities. New method In this paper, we propose to build a unified brain graph classification model trained on unpaired multimodal brain graphs, which can classify any brain graph of any size. This is enabled by incorporating a graph alignment step where all multi-modal graphs of different sizes and heterogeneous distributions are mapped to a common template graph. Next, we design a graph alignment strategy to the target fixed-size template and further apply linear discriminant analysis (LDA) to the aligned graphs as a supervised dimensionality reduction technique for the target classification task. Results We tested our method on unpaired autistic and healthy brain connectomes derived from functional and morphological MRI datasets (two modalities). Conclusion Our results showed that our unified model method not only has great promise in solving such a challenging problem but achieves comparable performance to models trained on each modality independently.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
44秒前
简单思萱发布了新的文献求助10
50秒前
可爱的函函应助简单思萱采纳,获得10
1分钟前
简单思萱完成签到,获得积分10
1分钟前
冷如松发布了新的文献求助30
1分钟前
冷如松完成签到,获得积分10
1分钟前
研友_892kOL完成签到,获得积分10
2分钟前
十七完成签到,获得积分10
2分钟前
JamesPei应助laa采纳,获得10
2分钟前
博ge完成签到 ,获得积分10
2分钟前
丘比特应助科研通管家采纳,获得10
3分钟前
明月清风完成签到,获得积分10
3分钟前
3分钟前
3分钟前
laa发布了新的文献求助10
4分钟前
4分钟前
4分钟前
吕晓鹏发布了新的文献求助10
4分钟前
左白易发布了新的文献求助10
4分钟前
4分钟前
ResKeZhang发布了新的文献求助10
4分钟前
小鬼完成签到,获得积分10
5分钟前
5分钟前
小鬼发布了新的文献求助30
5分钟前
甲氨蝶呤完成签到,获得积分10
6分钟前
6分钟前
魏白晴完成签到,获得积分10
6分钟前
6分钟前
Criminology34举报量子星尘求助涉嫌违规
6分钟前
球球子完成签到,获得积分10
6分钟前
7分钟前
7分钟前
刘辰完成签到 ,获得积分10
7分钟前
7分钟前
7分钟前
天天快乐应助科研通管家采纳,获得10
7分钟前
Criminology34应助科研通管家采纳,获得10
7分钟前
Criminology34应助科研通管家采纳,获得10
7分钟前
Criminology34应助科研通管家采纳,获得10
7分钟前
小东西发布了新的文献求助200
7分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertebrate Palaeontology, 5th Edition 530
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5346693
求助须知:如何正确求助?哪些是违规求助? 4481136
关于积分的说明 13947312
捐赠科研通 4379095
什么是DOI,文献DOI怎么找? 2406155
邀请新用户注册赠送积分活动 1398731
关于科研通互助平台的介绍 1371611