A diagnostic unified classification model for classifying multi-sized and multi-modal brain graphs using graph alignment.

计算机科学 人工智能 模式识别(心理学) 图形 机器学习 算法 支持向量机 情态动词 分类器(UML)
作者
Abdullah Yalçin,Islem Rekik
出处
期刊:Journal of Neuroscience Methods [Elsevier]
卷期号:348: 109014- 被引量:1
标识
DOI:10.1016/j.jneumeth.2020.109014
摘要

Abstract Background Presence of multimodal brain graphs derived from different neuroimaging modalities is inarguably one of the most critical challenges in building unified classification models that can be trained and tested on any brain graph regardless of its size and the modality it was derived from. Existing methods One solution is to learn a model for each modality independently, which is cumbersome and becomes more time-consuming as the number of modalities increases. Another traditional solution is to build a model inputting multimodal brain graphs for the target prediction task; however, this is only applicable to datasets where all samples have joint neuro-modalities. New method In this paper, we propose to build a unified brain graph classification model trained on unpaired multimodal brain graphs, which can classify any brain graph of any size. This is enabled by incorporating a graph alignment step where all multi-modal graphs of different sizes and heterogeneous distributions are mapped to a common template graph. Next, we design a graph alignment strategy to the target fixed-size template and further apply linear discriminant analysis (LDA) to the aligned graphs as a supervised dimensionality reduction technique for the target classification task. Results We tested our method on unpaired autistic and healthy brain connectomes derived from functional and morphological MRI datasets (two modalities). Conclusion Our results showed that our unified model method not only has great promise in solving such a challenging problem but achieves comparable performance to models trained on each modality independently.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Allen完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
辉辉发布了新的文献求助10
2秒前
CooperLI发布了新的文献求助10
2秒前
2秒前
3秒前
斯文败类应助阿辉采纳,获得10
4秒前
4秒前
许夜云发布了新的文献求助10
4秒前
机灵的雨文完成签到,获得积分10
4秒前
5秒前
CipherSage应助背后若菱采纳,获得10
5秒前
华仔应助土方子采纳,获得10
5秒前
NexusExplorer应助白白采纳,获得10
5秒前
YLsmu504应助huiyiMC采纳,获得10
6秒前
科研通AI5应助无语的冷卉采纳,获得10
6秒前
科研发布了新的文献求助10
6秒前
两条鱼发布了新的文献求助10
6秒前
6秒前
优秀的以南完成签到,获得积分10
7秒前
tianmeng发布了新的文献求助10
7秒前
完美世界应助cilivia采纳,获得10
7秒前
Joshua发布了新的文献求助10
8秒前
Wonder发布了新的文献求助10
8秒前
皮不起来的国国完成签到,获得积分10
10秒前
z1完成签到,获得积分10
10秒前
10秒前
11秒前
永不停歇奈格里完成签到,获得积分10
11秒前
11秒前
星辰大海应助科研采纳,获得10
11秒前
上官若男应助快乐的白桃采纳,获得10
12秒前
13秒前
rye发布了新的文献求助10
14秒前
复杂语山完成签到,获得积分10
14秒前
15秒前
txq应助尔东采纳,获得10
15秒前
8R60d8应助sysi采纳,获得10
15秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3473498
求助须知:如何正确求助?哪些是违规求助? 3066089
关于积分的说明 9096839
捐赠科研通 2757170
什么是DOI,文献DOI怎么找? 1512784
邀请新用户注册赠送积分活动 699080
科研通“疑难数据库(出版商)”最低求助积分说明 698805