SASLN: Signals Augmented Self-Taught Learning Networks for Mechanical Fault Diagnosis Under Small Sample Condition

稳健性(进化) 断层(地质) 计算机科学 信号(编程语言) 人工智能 一般化 样品(材料) 人工神经网络 状态监测 故障覆盖率 涡轮机 机器学习 模式识别(心理学) 实时计算 工程类 数学 数学分析 电子线路 地震学 色谱法 地质学 化学 电气工程 程序设计语言 基因 机械工程 生物化学
作者
Tianci Zhang,Jinglong Chen,Jingsong Xie,Tongyang Pan
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:70: 1-11 被引量:34
标识
DOI:10.1109/tim.2020.3043098
摘要

The implementation of condition monitoring and fault diagnosis is of special importance for ensuring wind turbine (WT) operation safely and stably. In practice, however, the fault data of WT are limited, which makes it hard to identify faults of WT accurately using the existing intelligent diagnosis methods. To address this, signals augmented self-taught learning network (SASLN) is proposed for the fault diagnosis of the generator, which is one of the most important parts in WT. In SASLN, fault signal samples are generated by the Wasserstein distance guided generative adversarial networks to expand the limited training data set. The sufficient generated signal samples are used to pretrain the self-taught learning network (SLN) to enhance the generalization ability of SLN. Then, the weights of SLN are fine-tuned using a small number of real signal samples for accurate fault classification. The effectiveness of SASLN is verified by two bearing vibration data sets. The results show that SASLN can achieve fairly high fault classification accuracy using small training samples. Besides, SASLN has good robustness in noisy working environment and can also identify faults even in variable loads and variable rotating speeds cases, which makes it meaningful for decreasing the running costs and improving the maintenance management of WT.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大鱼完成签到,获得积分10
刚刚
1秒前
1秒前
orixero应助JAYhxt采纳,获得30
2秒前
2秒前
2秒前
zirconium完成签到,获得积分20
2秒前
2秒前
阔达如松发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
3秒前
留胡子的千青完成签到,获得积分20
3秒前
5秒前
关23完成签到 ,获得积分10
5秒前
5秒前
大鱼发布了新的文献求助10
5秒前
Hello应助科研通管家采纳,获得10
5秒前
6秒前
6秒前
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
慕青应助科研通管家采纳,获得10
6秒前
所所应助科研通管家采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
7秒前
哦豁应助科研通管家采纳,获得10
7秒前
Owen应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
Hello应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
顾矜应助科研通管家采纳,获得10
7秒前
7秒前
小蘑菇应助科研通管家采纳,获得10
7秒前
7秒前
慕青应助科研通管家采纳,获得10
7秒前
所所应助科研通管家采纳,获得10
7秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Rare earth elements and their applications 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5767182
求助须知:如何正确求助?哪些是违规求助? 5568519
关于积分的说明 15414583
捐赠科研通 4901198
什么是DOI,文献DOI怎么找? 2636869
邀请新用户注册赠送积分活动 1585074
关于科研通互助平台的介绍 1540240