PhyGeoNet: Physics-informed geometry-adaptive convolutional neural networks for solving parameterized steady-state PDEs on irregular domain

卷积神经网络 稳态(化学) 参数化复杂度 领域(数学分析) 人工神经网络 计算机科学 几何学 人工智能 应用数学 算法 数学 数学分析 化学 物理化学
作者
Han Gao,Luning Sun,Jianxun Wang
出处
期刊:Journal of Computational Physics [Elsevier]
卷期号:428: 110079-110079 被引量:513
标识
DOI:10.1016/j.jcp.2020.110079
摘要

Recently, the advent of deep learning has spurred interest in the development of physics-informed neural networks (PINN) for efficiently solving partial differential equations (PDEs), particularly in a parametric setting. Among all different classes of deep neural networks, the convolutional neural network (CNN) has attracted increasing attention in the scientific machine learning community, since the parameter-sharing feature in CNN enables efficient learning for problems with large-scale spatiotemporal fields. However, one of the biggest challenges is that CNN only can handle regular geometries with image-like format (i.e., rectangular domains with uniform grids). In this paper, we propose a novel physics-constrained CNN learning architecture, aiming to learn solutions of parametric PDEs on irregular domains without any labeled data. In order to leverage powerful classic CNN backbones, elliptic coordinate mapping is introduced to enable coordinate transforms between the irregular physical domain and regular reference domain. The proposed method has been assessed by solving a number of PDEs on irregular domains, including heat equations and steady Navier-Stokes equations with parameterized boundary conditions and varying geometries. Moreover, the proposed method has also been compared against the state-of-the-art PINN with fully-connected neural network (FC-NN) formulation. The numerical results demonstrate the effectiveness of the proposed approach and exhibit notable superiority over the FC-NN based PINN in terms of efficiency and accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
an12138发布了新的文献求助10
1秒前
1秒前
1秒前
happiness发布了新的文献求助10
1秒前
1秒前
1秒前
超越发布了新的文献求助10
1秒前
犹豫的芝麻完成签到 ,获得积分10
2秒前
ksq完成签到,获得积分10
2秒前
不挑食的Marcophages完成签到,获得积分10
2秒前
王逗逗完成签到,获得积分10
2秒前
科研通AI2S应助psl采纳,获得10
2秒前
傅全有完成签到,获得积分10
2秒前
dzp发布了新的文献求助10
3秒前
乐观三问发布了新的文献求助10
3秒前
独特觅儿完成签到,获得积分10
3秒前
Owen应助liiy采纳,获得10
3秒前
BBBBBlue先森应助Doris采纳,获得10
4秒前
大个应助yecheng采纳,获得10
4秒前
4秒前
4秒前
打工人发布了新的文献求助10
4秒前
李芳完成签到,获得积分10
4秒前
hzs发布了新的文献求助30
4秒前
nihao完成签到,获得积分10
4秒前
科研kkkkkkkk完成签到,获得积分10
5秒前
weiwenzuo发布了新的文献求助10
5秒前
敲敲应助欧欧欧导采纳,获得10
5秒前
5秒前
汉堡包应助ningqing采纳,获得10
5秒前
嗯哼大王完成签到,获得积分10
5秒前
5秒前
defu完成签到,获得积分10
5秒前
6秒前
Hey完成签到 ,获得积分10
6秒前
6秒前
彭彦舟发布了新的文献求助10
7秒前
皮皮完成签到 ,获得积分10
7秒前
7秒前
lufang完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5402461
求助须知:如何正确求助?哪些是违规求助? 4521103
关于积分的说明 14083816
捐赠科研通 4435114
什么是DOI,文献DOI怎么找? 2434563
邀请新用户注册赠送积分活动 1426697
关于科研通互助平台的介绍 1405445