PhyGeoNet: Physics-informed geometry-adaptive convolutional neural networks for solving parameterized steady-state PDEs on irregular domain

卷积神经网络 稳态(化学) 参数化复杂度 领域(数学分析) 人工神经网络 计算机科学 几何学 人工智能 应用数学 算法 数学 数学分析 物理化学 化学
作者
Han Gao,Luning Sun,Jianxun Wang
出处
期刊:Journal of Computational Physics [Elsevier BV]
卷期号:428: 110079-110079 被引量:429
标识
DOI:10.1016/j.jcp.2020.110079
摘要

Recently, the advent of deep learning has spurred interest in the development of physics-informed neural networks (PINN) for efficiently solving partial differential equations (PDEs), particularly in a parametric setting. Among all different classes of deep neural networks, the convolutional neural network (CNN) has attracted increasing attention in the scientific machine learning community, since the parameter-sharing feature in CNN enables efficient learning for problems with large-scale spatiotemporal fields. However, one of the biggest challenges is that CNN only can handle regular geometries with image-like format (i.e., rectangular domains with uniform grids). In this paper, we propose a novel physics-constrained CNN learning architecture, aiming to learn solutions of parametric PDEs on irregular domains without any labeled data. In order to leverage powerful classic CNN backbones, elliptic coordinate mapping is introduced to enable coordinate transforms between the irregular physical domain and regular reference domain. The proposed method has been assessed by solving a number of PDEs on irregular domains, including heat equations and steady Navier-Stokes equations with parameterized boundary conditions and varying geometries. Moreover, the proposed method has also been compared against the state-of-the-art PINN with fully-connected neural network (FC-NN) formulation. The numerical results demonstrate the effectiveness of the proposed approach and exhibit notable superiority over the FC-NN based PINN in terms of efficiency and accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Marciu33发布了新的文献求助20
3秒前
鲁路修完成签到,获得积分10
4秒前
6秒前
7秒前
搬砖人完成签到,获得积分10
7秒前
Xieyusen发布了新的文献求助10
11秒前
123发布了新的文献求助70
12秒前
搜集达人应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
yznfly应助科研通管家采纳,获得50
12秒前
852应助科研通管家采纳,获得10
12秒前
fgd应助科研通管家采纳,获得10
12秒前
ding应助科研通管家采纳,获得10
12秒前
领导范儿应助科研通管家采纳,获得10
12秒前
8R60d8应助科研通管家采纳,获得10
12秒前
8R60d8应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
13秒前
pipi发布了新的文献求助30
13秒前
安等暖阳完成签到 ,获得积分10
14秒前
anin完成签到,获得积分10
15秒前
Jungel完成签到,获得积分0
16秒前
16秒前
16秒前
研友_89jr6L完成签到,获得积分10
17秒前
洪焕良完成签到,获得积分10
18秒前
情怀应助王肖采纳,获得10
19秒前
博修发布了新的文献求助30
20秒前
FashionBoy应助pipi采纳,获得10
21秒前
21秒前
23秒前
Aurora发布了新的文献求助10
24秒前
Sunnut发布了新的文献求助10
25秒前
Khalil留下了新的社区评论
25秒前
薛言发布了新的文献求助30
27秒前
31秒前
香蕉觅云应助Sunnut采纳,获得10
31秒前
31秒前
SW冒险家完成签到 ,获得积分10
33秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962898
求助须知:如何正确求助?哪些是违规求助? 3508858
关于积分的说明 11143641
捐赠科研通 3241777
什么是DOI,文献DOI怎么找? 1791659
邀请新用户注册赠送积分活动 873063
科研通“疑难数据库(出版商)”最低求助积分说明 803579