亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A deep-learning real-time visual SLAM system based on multi-task feature extraction network and self-supervised feature points

人工智能 计算机科学 特征提取 特征(语言学) 同时定位和映射 卷积神经网络 模式识别(心理学) 计算机视觉 任务(项目管理) 深度学习 移动机器人 机器人 工程类 语言学 哲学 系统工程
作者
Guangqiang Li,Lei Yu,Shumin Fei
出处
期刊:Measurement [Elsevier]
卷期号:168: 108403-108403 被引量:28
标识
DOI:10.1016/j.measurement.2020.108403
摘要

Simultaneous Localization and Mapping (SLAM) is the basis for intelligent mobile robots to work in unknown environments. However, traditional feature extraction algorithms that traditional visual SLAM systems rely on have difficulty dealing with texture-less regions and other complex scenes, which limits the development of visual SLAM. The studies of feature points extraction adopting deep learning show that this method has more advantages than traditional methods in dealing with complex scenes, but these studies consider accuracy while ignoring the efficiency. To solve these problems, this paper proposes a deep-learning real-time visual SLAM system based on multi-task feature extraction network and self-supervised feature points. By designing a simplified Convolutional Neural Network (CNN) for detecting feature points and descriptors to replace the traditional feature extractor, the accuracy and stability of the visual SLAM system are enhanced. The experimental results in a dataset and real environments show that the proposed system can maintain high accuracy in a variety of challenging scenes, run on a GPU in real-time, and support the construction of dense 3D maps. Moreover, its overall performance is better than the current traditional visual SLAM system.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
每㐬山风完成签到 ,获得积分10
3秒前
6秒前
LukeLion发布了新的文献求助10
11秒前
19秒前
微醺潮汐发布了新的文献求助10
23秒前
852应助dbyy采纳,获得10
37秒前
灯光师完成签到,获得积分10
47秒前
47秒前
47秒前
轻松一曲发布了新的文献求助10
50秒前
轻松一曲完成签到,获得积分10
1分钟前
动听的又亦完成签到 ,获得积分10
1分钟前
1分钟前
du关闭了du文献求助
1分钟前
答辩完成签到 ,获得积分10
1分钟前
1分钟前
领导范儿应助LiuHD采纳,获得10
1分钟前
JoeyJin完成签到,获得积分10
1分钟前
科目三应助zhang采纳,获得10
1分钟前
1分钟前
xaopng完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
dbyy发布了新的文献求助10
2分钟前
zhang发布了新的文献求助10
2分钟前
2分钟前
LukeLion发布了新的文献求助10
2分钟前
zhang关注了科研通微信公众号
2分钟前
MOLV应助柚子想吃橘子采纳,获得10
2分钟前
轻松戎发布了新的文献求助10
2分钟前
2分钟前
2分钟前
SUnnnnn发布了新的文献求助10
2分钟前
dbyy完成签到 ,获得积分20
2分钟前
轻松戎完成签到,获得积分10
2分钟前
SUnnnnn完成签到,获得积分20
3分钟前
Persist6578完成签到 ,获得积分10
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Bone Marrow Immunohistochemistry 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5628131
求助须知:如何正确求助?哪些是违规求助? 4715760
关于积分的说明 14963712
捐赠科研通 4785826
什么是DOI,文献DOI怎么找? 2555337
邀请新用户注册赠送积分活动 1516672
关于科研通互助平台的介绍 1477224