Identifying Alzheimer’s Disease-related miRNA Based on Semi-clustering

小RNA 疾病 支持向量机 基因 计算生物学 聚类分析 生物 生物标志物 相关性 阿尔茨海默病 生物信息学 遗传学 计算机科学 医学 人工智能 病理 数学 几何学
作者
Tianyi Zhao,Donghua Wang,Yang Hu,Ningyi Zhang,Tianyi Zang,Yadong Wang
出处
期刊:Current Gene Therapy [Bentham Science Publishers]
卷期号:19 (4): 216-223 被引量:8
标识
DOI:10.2174/1566523219666190924113737
摘要

Background: More and more scholars are trying to use it as a specific biomarker for Alzheimer’s Disease (AD) and mild cognitive impairment (MCI). Multiple studies have indicated that miRNAs are associated with poor axonal growth and loss of synaptic structures, both of which are early events in AD. The overall loss of miRNA may be associated with aging, increasing the incidence of AD, and may also be involved in the disease through some specific molecular mechanisms. Objective: Identifying Alzheimer’s disease-related miRNA can help us find new drug targets, early diagnosis. Materials and Methods: We used genes as a bridge to connect AD and miRNAs. Firstly, proteinprotein interaction network is used to find more AD-related genes by known AD-related genes. Then, each miRNA’s correlation with these genes is obtained by miRNA-gene interaction. Finally, each miRNA could get a feature vector representing its correlation with AD. Unlike other studies, we do not generate negative samples randomly with using classification method to identify AD-related miRNAs. Here we use a semi-clustering method ‘one-class SVM’. AD-related miRNAs are considered as outliers and our aim is to identify the miRNAs that are similar to known AD-related miRNAs (outliers). Results and Conclusion: We identified 257 novel AD-related miRNAs and compare our method with SVM which is applied by generating negative samples. The AUC of our method is much higher than SVM and we did case studies to prove that our results are reliable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ding应助SY采纳,获得10
1秒前
传奇3应助xiao白采纳,获得10
1秒前
zhangyu应助环游水星采纳,获得10
3秒前
麦子发布了新的文献求助10
3秒前
4秒前
传奇3应助纳米酶催化采纳,获得10
6秒前
万能图书馆应助明亮安双采纳,获得10
6秒前
7秒前
chris完成签到,获得积分10
7秒前
Connie发布了新的文献求助10
10秒前
Smile发布了新的文献求助10
11秒前
12秒前
XFaning完成签到 ,获得积分20
14秒前
提纳里的尾巴毛完成签到,获得积分10
15秒前
arrebol完成签到,获得积分20
15秒前
15秒前
111发布了新的文献求助10
15秒前
16秒前
16秒前
16秒前
gsa7完成签到,获得积分10
17秒前
18秒前
wujiao发布了新的文献求助10
18秒前
18秒前
华仔应助李昕123采纳,获得10
19秒前
20秒前
hengistdeng发布了新的文献求助10
20秒前
arrebol发布了新的文献求助10
21秒前
123456发布了新的文献求助10
22秒前
22秒前
pdx666发布了新的文献求助10
22秒前
李健的小迷弟应助张爱学采纳,获得10
23秒前
FashionBoy应助Smile采纳,获得10
23秒前
孙燕应助pdx666采纳,获得10
25秒前
欢檬应助zy采纳,获得10
28秒前
Lucas应助小次之山采纳,获得10
28秒前
于芋菊完成签到,获得积分0
33秒前
wanci应助祎橘采纳,获得10
33秒前
34秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992986
求助须知:如何正确求助?哪些是违规求助? 3533726
关于积分的说明 11263679
捐赠科研通 3273550
什么是DOI,文献DOI怎么找? 1806095
邀请新用户注册赠送积分活动 882942
科研通“疑难数据库(出版商)”最低求助积分说明 809629