亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Identifying Alzheimer’s Disease-related miRNA Based on Semi-clustering

小RNA 疾病 支持向量机 基因 计算生物学 聚类分析 生物 生物标志物 相关性 阿尔茨海默病 生物信息学 遗传学 计算机科学 医学 人工智能 病理 数学 几何学
作者
Tianyi Zhao,Donghua Wang,Yang Hu,Ningyi Zhang,Tianyi Zang,Yadong Wang
出处
期刊:Current Gene Therapy [Bentham Science]
卷期号:19 (4): 216-223 被引量:8
标识
DOI:10.2174/1566523219666190924113737
摘要

Background: More and more scholars are trying to use it as a specific biomarker for Alzheimer’s Disease (AD) and mild cognitive impairment (MCI). Multiple studies have indicated that miRNAs are associated with poor axonal growth and loss of synaptic structures, both of which are early events in AD. The overall loss of miRNA may be associated with aging, increasing the incidence of AD, and may also be involved in the disease through some specific molecular mechanisms. Objective: Identifying Alzheimer’s disease-related miRNA can help us find new drug targets, early diagnosis. Materials and Methods: We used genes as a bridge to connect AD and miRNAs. Firstly, proteinprotein interaction network is used to find more AD-related genes by known AD-related genes. Then, each miRNA’s correlation with these genes is obtained by miRNA-gene interaction. Finally, each miRNA could get a feature vector representing its correlation with AD. Unlike other studies, we do not generate negative samples randomly with using classification method to identify AD-related miRNAs. Here we use a semi-clustering method ‘one-class SVM’. AD-related miRNAs are considered as outliers and our aim is to identify the miRNAs that are similar to known AD-related miRNAs (outliers). Results and Conclusion: We identified 257 novel AD-related miRNAs and compare our method with SVM which is applied by generating negative samples. The AUC of our method is much higher than SVM and we did case studies to prove that our results are reliable.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
23秒前
Kototo完成签到,获得积分10
55秒前
我是老大应助危机的雪旋采纳,获得10
1分钟前
Hillson完成签到,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
日富一日发布了新的文献求助10
2分钟前
zuihaodewomen完成签到 ,获得积分10
2分钟前
Phil完成签到 ,获得积分10
2分钟前
刘天宇完成签到 ,获得积分10
3分钟前
Sue完成签到 ,获得积分10
3分钟前
blueskyzhi完成签到,获得积分10
3分钟前
CodeCraft应助优秀的行云采纳,获得10
3分钟前
ysss0831完成签到,获得积分10
4分钟前
4分钟前
优秀的行云完成签到,获得积分10
4分钟前
zilt1109发布了新的文献求助10
4分钟前
赘婿应助Queena采纳,获得10
4分钟前
4分钟前
4分钟前
jfc完成签到 ,获得积分10
4分钟前
Queena发布了新的文献求助10
4分钟前
鲍惜寒完成签到 ,获得积分20
4分钟前
鲍惜寒发布了新的文献求助10
4分钟前
4分钟前
5分钟前
5分钟前
Becky完成签到 ,获得积分10
5分钟前
白华苍松发布了新的文献求助20
5分钟前
yhw完成签到,获得积分20
5分钟前
5分钟前
yhw发布了新的文献求助10
6分钟前
开放蓝天应助白华苍松采纳,获得10
6分钟前
Hello应助yhw采纳,获得10
6分钟前
小丸子和zz完成签到 ,获得积分10
6分钟前
JoeyJin完成签到,获得积分10
7分钟前
nuoberry完成签到,获得积分10
7分钟前
夜雨完成签到,获得积分10
7分钟前
花陵完成签到 ,获得积分10
7分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584670
求助须知:如何正确求助?哪些是违规求助? 4668608
关于积分的说明 14771499
捐赠科研通 4612897
什么是DOI,文献DOI怎么找? 2530169
邀请新用户注册赠送积分活动 1499067
关于科研通互助平台的介绍 1467499