Identifying Alzheimer’s Disease-related miRNA Based on Semi-clustering

小RNA 疾病 支持向量机 基因 计算生物学 聚类分析 生物 生物标志物 相关性 阿尔茨海默病 生物信息学 遗传学 计算机科学 医学 人工智能 病理 数学 几何学
作者
Tianyi Zhao,Donghua Wang,Yang Hu,Ningyi Zhang,Tianyi Zang,Yadong Wang
出处
期刊:Current Gene Therapy [Bentham Science]
卷期号:19 (4): 216-223 被引量:8
标识
DOI:10.2174/1566523219666190924113737
摘要

Background: More and more scholars are trying to use it as a specific biomarker for Alzheimer’s Disease (AD) and mild cognitive impairment (MCI). Multiple studies have indicated that miRNAs are associated with poor axonal growth and loss of synaptic structures, both of which are early events in AD. The overall loss of miRNA may be associated with aging, increasing the incidence of AD, and may also be involved in the disease through some specific molecular mechanisms. Objective: Identifying Alzheimer’s disease-related miRNA can help us find new drug targets, early diagnosis. Materials and Methods: We used genes as a bridge to connect AD and miRNAs. Firstly, proteinprotein interaction network is used to find more AD-related genes by known AD-related genes. Then, each miRNA’s correlation with these genes is obtained by miRNA-gene interaction. Finally, each miRNA could get a feature vector representing its correlation with AD. Unlike other studies, we do not generate negative samples randomly with using classification method to identify AD-related miRNAs. Here we use a semi-clustering method ‘one-class SVM’. AD-related miRNAs are considered as outliers and our aim is to identify the miRNAs that are similar to known AD-related miRNAs (outliers). Results and Conclusion: We identified 257 novel AD-related miRNAs and compare our method with SVM which is applied by generating negative samples. The AUC of our method is much higher than SVM and we did case studies to prove that our results are reliable.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阳光秋烟完成签到 ,获得积分10
1秒前
孙靖博发布了新的文献求助10
1秒前
涵絮发布了新的文献求助10
1秒前
1秒前
时尚的寄云完成签到,获得积分20
2秒前
温柔的秋柳完成签到,获得积分10
2秒前
2秒前
4秒前
情怀应助大大采纳,获得10
4秒前
5秒前
5秒前
被子完成签到,获得积分10
5秒前
缥缈苑博发布了新的文献求助10
6秒前
完美世界应助wsw111采纳,获得10
6秒前
7秒前
英俊的铭应助自觉的笑寒采纳,获得10
7秒前
王一一完成签到,获得积分10
7秒前
8秒前
酸牛奶完成签到,获得积分10
8秒前
无极微光应助ww采纳,获得20
8秒前
RK_404完成签到,获得积分10
8秒前
bkagyin应助代沁采纳,获得10
9秒前
10秒前
baroco完成签到,获得积分10
10秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
隐形曼青应助被子采纳,获得10
10秒前
hh发布了新的文献求助30
11秒前
同你讲发布了新的文献求助10
11秒前
拾玖应助xhcdz采纳,获得20
12秒前
12秒前
12秒前
14秒前
Kw发布了新的文献求助10
15秒前
15秒前
15秒前
情怀应助狂野的猕猴桃采纳,获得10
15秒前
李健应助PJ采纳,获得10
16秒前
直捣中科院完成签到,获得积分10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776692
求助须知:如何正确求助?哪些是违规求助? 5630245
关于积分的说明 15443636
捐赠科研通 4908741
什么是DOI,文献DOI怎么找? 2641390
邀请新用户注册赠送积分活动 1589383
关于科研通互助平台的介绍 1543956