Identifying Alzheimer’s Disease-related miRNA Based on Semi-clustering

小RNA 疾病 支持向量机 基因 计算生物学 聚类分析 生物 生物标志物 相关性 阿尔茨海默病 生物信息学 遗传学 计算机科学 医学 人工智能 病理 数学 几何学
作者
Tianyi Zhao,Donghua Wang,Yang Hu,Ningyi Zhang,Tianyi Zang,Yadong Wang
出处
期刊:Current Gene Therapy [Bentham Science]
卷期号:19 (4): 216-223 被引量:8
标识
DOI:10.2174/1566523219666190924113737
摘要

Background: More and more scholars are trying to use it as a specific biomarker for Alzheimer’s Disease (AD) and mild cognitive impairment (MCI). Multiple studies have indicated that miRNAs are associated with poor axonal growth and loss of synaptic structures, both of which are early events in AD. The overall loss of miRNA may be associated with aging, increasing the incidence of AD, and may also be involved in the disease through some specific molecular mechanisms. Objective: Identifying Alzheimer’s disease-related miRNA can help us find new drug targets, early diagnosis. Materials and Methods: We used genes as a bridge to connect AD and miRNAs. Firstly, proteinprotein interaction network is used to find more AD-related genes by known AD-related genes. Then, each miRNA’s correlation with these genes is obtained by miRNA-gene interaction. Finally, each miRNA could get a feature vector representing its correlation with AD. Unlike other studies, we do not generate negative samples randomly with using classification method to identify AD-related miRNAs. Here we use a semi-clustering method ‘one-class SVM’. AD-related miRNAs are considered as outliers and our aim is to identify the miRNAs that are similar to known AD-related miRNAs (outliers). Results and Conclusion: We identified 257 novel AD-related miRNAs and compare our method with SVM which is applied by generating negative samples. The AUC of our method is much higher than SVM and we did case studies to prove that our results are reliable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zxj发布了新的文献求助10
刚刚
李健应助科研通管家采纳,获得30
刚刚
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
情怀应助科研通管家采纳,获得10
2秒前
maque4004完成签到,获得积分10
3秒前
桐桐应助777yyy采纳,获得10
4秒前
我是老大应助科研通管家采纳,获得10
5秒前
tp040900发布了新的文献求助20
6秒前
今后应助兼雨梧桐采纳,获得10
6秒前
6秒前
小高完成签到,获得积分10
7秒前
科研通AI2S应助Mcarry采纳,获得10
7秒前
传奇3应助科研通管家采纳,获得10
7秒前
8秒前
13秒前
13秒前
材料人发布了新的文献求助10
14秒前
孤独的芒果完成签到,获得积分10
15秒前
肥鲶鱼完成签到,获得积分10
15秒前
852应助chy采纳,获得10
15秒前
agui完成签到 ,获得积分10
20秒前
20秒前
20秒前
聪明的寒烟完成签到,获得积分10
20秒前
21秒前
21秒前
哎呦喂发布了新的文献求助20
21秒前
Wtf完成签到,获得积分10
22秒前
23秒前
23秒前
Lucky完成签到,获得积分10
26秒前
共享精神应助自然的致远采纳,获得10
28秒前
kyt发布了新的文献求助10
28秒前
cccdida发布了新的文献求助10
28秒前
28秒前
混子完成签到,获得积分10
29秒前
上官若男应助tong采纳,获得30
29秒前
balabala发布了新的文献求助10
29秒前
llccss完成签到,获得积分10
29秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3123270
求助须知:如何正确求助?哪些是违规求助? 2773756
关于积分的说明 7719288
捐赠科研通 2429428
什么是DOI,文献DOI怎么找? 1290306
科研通“疑难数据库(出版商)”最低求助积分说明 621803
版权声明 600251