已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Identifying Alzheimer’s Disease-related miRNA Based on Semi-clustering

小RNA 疾病 支持向量机 基因 计算生物学 聚类分析 生物 生物标志物 相关性 阿尔茨海默病 生物信息学 遗传学 计算机科学 医学 人工智能 病理 数学 几何学
作者
Tianyi Zhao,Donghua Wang,Yang Hu,Ningyi Zhang,Tianyi Zang,Yadong Wang
出处
期刊:Current Gene Therapy [Bentham Science]
卷期号:19 (4): 216-223 被引量:8
标识
DOI:10.2174/1566523219666190924113737
摘要

Background: More and more scholars are trying to use it as a specific biomarker for Alzheimer’s Disease (AD) and mild cognitive impairment (MCI). Multiple studies have indicated that miRNAs are associated with poor axonal growth and loss of synaptic structures, both of which are early events in AD. The overall loss of miRNA may be associated with aging, increasing the incidence of AD, and may also be involved in the disease through some specific molecular mechanisms. Objective: Identifying Alzheimer’s disease-related miRNA can help us find new drug targets, early diagnosis. Materials and Methods: We used genes as a bridge to connect AD and miRNAs. Firstly, proteinprotein interaction network is used to find more AD-related genes by known AD-related genes. Then, each miRNA’s correlation with these genes is obtained by miRNA-gene interaction. Finally, each miRNA could get a feature vector representing its correlation with AD. Unlike other studies, we do not generate negative samples randomly with using classification method to identify AD-related miRNAs. Here we use a semi-clustering method ‘one-class SVM’. AD-related miRNAs are considered as outliers and our aim is to identify the miRNAs that are similar to known AD-related miRNAs (outliers). Results and Conclusion: We identified 257 novel AD-related miRNAs and compare our method with SVM which is applied by generating negative samples. The AUC of our method is much higher than SVM and we did case studies to prove that our results are reliable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
RRR232完成签到 ,获得积分10
1秒前
1秒前
Owen应助如意枫叶采纳,获得10
2秒前
wop111发布了新的文献求助10
2秒前
JamesPei应助蓝精灵采纳,获得10
3秒前
cossen完成签到 ,获得积分10
3秒前
jarrykim完成签到,获得积分10
4秒前
4秒前
喵喵喵完成签到 ,获得积分10
4秒前
北北完成签到 ,获得积分10
5秒前
务实的犀牛完成签到,获得积分10
5秒前
5秒前
8秒前
川川发布了新的文献求助10
8秒前
Criminology34举报向磊求助涉嫌违规
10秒前
lizhongyu完成签到,获得积分10
11秒前
reeedirect完成签到,获得积分10
11秒前
知性的梨愁完成签到,获得积分10
12秒前
12秒前
沉默的谷丝完成签到,获得积分10
13秒前
木子完成签到 ,获得积分10
13秒前
13秒前
13秒前
无极微光应助reeedirect采纳,获得20
14秒前
到江南散步完成签到,获得积分10
15秒前
15秒前
15秒前
15秒前
故意的鞋垫完成签到 ,获得积分10
16秒前
16秒前
热心的十二完成签到 ,获得积分10
17秒前
如意枫叶发布了新的文献求助10
17秒前
蓝精灵发布了新的文献求助10
18秒前
21秒前
Lenna45完成签到 ,获得积分10
22秒前
22秒前
勤恳的小甜瓜关注了科研通微信公众号
22秒前
22秒前
monned完成签到 ,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
Introduction to Early Childhood Education 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418128
求助须知:如何正确求助?哪些是违规求助? 4533794
关于积分的说明 14142517
捐赠科研通 4450087
什么是DOI,文献DOI怎么找? 2441101
邀请新用户注册赠送积分活动 1432850
关于科研通互助平台的介绍 1410054