Fault diagnosis of rolling bearing with variable working conditions in noisy environment based on dynamic soft threshold and attention mechanism

计算机科学 阈值 稳健性(进化) 方位(导航) 人工智能 噪音(视频) 断层(地质) 时域 模式识别(心理学) 计算机视觉 生物化学 化学 地震学 图像(数学) 基因 地质学
作者
Ankang Li,Dechen Yao,Jianwei Yang,Tao Zhou
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad9bd0
摘要

Abstract In response to the complex and variable working conditions faced by rolling bearings during actual operation, as well as the issue of vibration signal acquisition being easily disrupted by noise interference, the study describes the multi-source domain anti-noise rolling bearing failure detection approach (MEDThresNet). The purpose of this model's design is to solve the challenges of a lack of corresponding sample data and noisy signals in bearing fault classification. Using multi-condition source domains, as opposed to a single working condition source domain data, might help gain information from diverse domains and minimise overreliance on data from a specific working condition source domain. This can significantly increase the model's generalisation and robustness, and fault identification accuracy. Convolutional modules with soft thresholding and attention mechanisms are applied in this network structure. Soft thresholding helps to suppress noise in the data during the training phase while keeping critical characteristics. The attention mechanism, on the other hand, allows the model to automatically focus on the critical areas of the defect information in the bearing vibration signals throughout the training phase, hence improving the network's performance and generalisation ability. Furthermore, the network aligns the joint distribution of source and target domain data across many particular levels using the Joint Maximum Mean Discrepancy approach to accomplish unsupervised domain adaptation. This allows the network to successfully transfer information learnt from the source domain data of the faulty bearing to the target domain of the faulty bearing, improving the model's generalisability on the target domain. This research tests the network on two datasets with varied working conditions, CWRU and Ottawa, and the findings demonstrate that the network is high robustness and accurate for multi-source domain transfer diagnosis in noisy environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
予初发布了新的文献求助10
刚刚
1秒前
彭于晏应助停水出神采纳,获得10
1秒前
不再是纳米的正肽完成签到,获得积分10
1秒前
DARLING002完成签到 ,获得积分10
1秒前
生动依凝发布了新的文献求助10
2秒前
2秒前
碱性染料发布了新的文献求助10
2秒前
3秒前
十点差一分完成签到,获得积分10
3秒前
冷静的寒荷完成签到,获得积分10
4秒前
4秒前
NexusExplorer应助buzenilei采纳,获得10
4秒前
4秒前
无限紫菜发布了新的文献求助10
6秒前
wanci应助河豚来辽采纳,获得10
6秒前
高大的立果完成签到,获得积分10
6秒前
lgq12697完成签到,获得积分0
7秒前
7秒前
yuky完成签到,获得积分10
8秒前
9秒前
9秒前
爆米花应助予初采纳,获得10
10秒前
10秒前
Hello应助1111采纳,获得10
11秒前
11秒前
腾腾腾发布了新的文献求助10
11秒前
梨梨完成签到,获得积分20
12秒前
12秒前
萌帆星完成签到 ,获得积分10
13秒前
杨杨001完成签到,获得积分10
13秒前
小孟完成签到,获得积分10
13秒前
Ting发布了新的文献求助10
13秒前
14秒前
15秒前
椿萱并茂发布了新的文献求助10
15秒前
万能图书馆应助刘shuchang采纳,获得10
15秒前
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Weekly Somapacitan is Effective and Well-Tolerated in Children with Idiopathic Short Stature: Randomised Phase 3 Trial 600
Technical Report No. 22 (Revised 2025): Process Simulation for Aseptically Filled Products 500
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5016348
求助须知:如何正确求助?哪些是违规求助? 4256394
关于积分的说明 13264643
捐赠科研通 4060429
什么是DOI,文献DOI怎么找? 2220848
邀请新用户注册赠送积分活动 1230087
关于科研通互助平台的介绍 1152714