Fault diagnosis of rolling bearing with variable working conditions in noisy environment based on dynamic soft threshold and attention mechanism

计算机科学 阈值 稳健性(进化) 方位(导航) 人工智能 噪音(视频) 断层(地质) 时域 模式识别(心理学) 计算机视觉 生物化学 基因 图像(数学) 地质学 地震学 化学
作者
Ankang Li,Dechen Yao,Jianwei Yang,Tao Zhou
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad9bd0
摘要

Abstract In response to the complex and variable working conditions faced by rolling bearings during actual operation, as well as the issue of vibration signal acquisition being easily disrupted by noise interference, the study describes the multi-source domain anti-noise rolling bearing failure detection approach (MEDThresNet). The purpose of this model's design is to solve the challenges of a lack of corresponding sample data and noisy signals in bearing fault classification. Using multi-condition source domains, as opposed to a single working condition source domain data, might help gain information from diverse domains and minimise overreliance on data from a specific working condition source domain. This can significantly increase the model's generalisation and robustness, and fault identification accuracy. Convolutional modules with soft thresholding and attention mechanisms are applied in this network structure. Soft thresholding helps to suppress noise in the data during the training phase while keeping critical characteristics. The attention mechanism, on the other hand, allows the model to automatically focus on the critical areas of the defect information in the bearing vibration signals throughout the training phase, hence improving the network's performance and generalisation ability. Furthermore, the network aligns the joint distribution of source and target domain data across many particular levels using the Joint Maximum Mean Discrepancy approach to accomplish unsupervised domain adaptation. This allows the network to successfully transfer information learnt from the source domain data of the faulty bearing to the target domain of the faulty bearing, improving the model's generalisability on the target domain. This research tests the network on two datasets with varied working conditions, CWRU and Ottawa, and the findings demonstrate that the network is high robustness and accurate for multi-source domain transfer diagnosis in noisy environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cure发布了新的文献求助30
刚刚
刚刚
黄倩倩完成签到,获得积分10
1秒前
舒心谷雪完成签到 ,获得积分10
1秒前
whuyyz完成签到,获得积分10
1秒前
骑士完成签到,获得积分10
1秒前
2秒前
2秒前
云为晓发布了新的文献求助10
2秒前
1111完成签到,获得积分10
2秒前
2秒前
lifeng完成签到 ,获得积分10
2秒前
小马甲应助Xue采纳,获得10
3秒前
3秒前
A1len完成签到,获得积分10
3秒前
哈哈哈哈哈哈完成签到,获得积分10
3秒前
T_Y发布了新的文献求助10
4秒前
4秒前
圆你心安完成签到,获得积分10
4秒前
lililili完成签到,获得积分10
4秒前
thesky完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
ppp完成签到,获得积分10
6秒前
共享精神应助好好学习采纳,获得10
6秒前
2752543083完成签到,获得积分20
6秒前
2526发布了新的文献求助10
6秒前
阿玺完成签到,获得积分10
7秒前
wuli发布了新的文献求助10
7秒前
thesky发布了新的文献求助10
7秒前
7秒前
加油完成签到,获得积分20
7秒前
烟花应助小小雨泪采纳,获得10
8秒前
雾色笼晓树苍完成签到 ,获得积分10
8秒前
李健的小迷弟应助李兴起采纳,获得10
8秒前
Orange应助爰采唐矣采纳,获得10
9秒前
Thien应助半山采纳,获得20
9秒前
科研通AI6应助刘唐荣采纳,获得10
9秒前
zy发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5395898
求助须知:如何正确求助?哪些是违规求助? 4516372
关于积分的说明 14059288
捐赠科研通 4428272
什么是DOI,文献DOI怎么找? 2432028
邀请新用户注册赠送积分活动 1424218
关于科研通互助平台的介绍 1403436