Fault diagnosis of rolling bearing with variable working conditions in noisy environment based on dynamic soft threshold and attention mechanism

计算机科学 阈值 稳健性(进化) 方位(导航) 人工智能 噪音(视频) 断层(地质) 时域 模式识别(心理学) 计算机视觉 生物化学 基因 图像(数学) 地质学 地震学 化学
作者
Ankang Li,Dechen Yao,Jianwei Yang,Tao Zhou
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad9bd0
摘要

Abstract In response to the complex and variable working conditions faced by rolling bearings during actual operation, as well as the issue of vibration signal acquisition being easily disrupted by noise interference, the study describes the multi-source domain anti-noise rolling bearing failure detection approach (MEDThresNet). The purpose of this model's design is to solve the challenges of a lack of corresponding sample data and noisy signals in bearing fault classification. Using multi-condition source domains, as opposed to a single working condition source domain data, might help gain information from diverse domains and minimise overreliance on data from a specific working condition source domain. This can significantly increase the model's generalisation and robustness, and fault identification accuracy. Convolutional modules with soft thresholding and attention mechanisms are applied in this network structure. Soft thresholding helps to suppress noise in the data during the training phase while keeping critical characteristics. The attention mechanism, on the other hand, allows the model to automatically focus on the critical areas of the defect information in the bearing vibration signals throughout the training phase, hence improving the network's performance and generalisation ability. Furthermore, the network aligns the joint distribution of source and target domain data across many particular levels using the Joint Maximum Mean Discrepancy approach to accomplish unsupervised domain adaptation. This allows the network to successfully transfer information learnt from the source domain data of the faulty bearing to the target domain of the faulty bearing, improving the model's generalisability on the target domain. This research tests the network on two datasets with varied working conditions, CWRU and Ottawa, and the findings demonstrate that the network is high robustness and accurate for multi-source domain transfer diagnosis in noisy environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fxx发布了新的文献求助10
刚刚
西陆完成签到,获得积分10
刚刚
龙龙完成签到,获得积分10
刚刚
Terry完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
nanah完成签到,获得积分10
2秒前
崔宏玺发布了新的文献求助10
2秒前
2秒前
GuSiwen发布了新的文献求助10
2秒前
酷波er应助milalala采纳,获得10
2秒前
2秒前
阿七完成签到,获得积分10
3秒前
Akim应助zhangjiyuan采纳,获得10
4秒前
4秒前
4秒前
blessed兰发布了新的文献求助30
5秒前
joni完成签到,获得积分10
5秒前
桐桐应助不知道在干嘛采纳,获得10
5秒前
儒雅沛蓝发布了新的文献求助10
5秒前
宇先生完成签到 ,获得积分10
5秒前
嘴嘴完成签到,获得积分10
6秒前
Ava应助huanmo采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
WXP发布了新的文献求助30
6秒前
7秒前
大模型应助阳佟怀绿采纳,获得10
7秒前
7秒前
小蘑菇应助moyacheung采纳,获得10
7秒前
靓丽月饼完成签到,获得积分20
7秒前
852应助科研通管家采纳,获得10
7秒前
苦学僧发布了新的文献求助10
7秒前
丘比特应助科研通管家采纳,获得10
8秒前
烟花应助汎影采纳,获得10
8秒前
打打应助科研通管家采纳,获得10
8秒前
asdf完成签到,获得积分10
8秒前
Stella应助科研通管家采纳,获得30
8秒前
张111应助科研通管家采纳,获得10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5415771
求助须知:如何正确求助?哪些是违规求助? 4532263
关于积分的说明 14133055
捐赠科研通 4447904
什么是DOI,文献DOI怎么找? 2439987
邀请新用户注册赠送积分活动 1431956
关于科研通互助平台的介绍 1409526