Fault diagnosis of rolling bearing with variable working conditions in noisy environment based on dynamic soft threshold and attention mechanism

计算机科学 阈值 稳健性(进化) 方位(导航) 人工智能 噪音(视频) 断层(地质) 时域 模式识别(心理学) 计算机视觉 生物化学 化学 地震学 图像(数学) 基因 地质学
作者
Ankang Li,Dechen Yao,Jianwei Yang,Tao Zhou
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad9bd0
摘要

Abstract In response to the complex and variable working conditions faced by rolling bearings during actual operation, as well as the issue of vibration signal acquisition being easily disrupted by noise interference, the study describes the multi-source domain anti-noise rolling bearing failure detection approach (MEDThresNet). The purpose of this model's design is to solve the challenges of a lack of corresponding sample data and noisy signals in bearing fault classification. Using multi-condition source domains, as opposed to a single working condition source domain data, might help gain information from diverse domains and minimise overreliance on data from a specific working condition source domain. This can significantly increase the model's generalisation and robustness, and fault identification accuracy. Convolutional modules with soft thresholding and attention mechanisms are applied in this network structure. Soft thresholding helps to suppress noise in the data during the training phase while keeping critical characteristics. The attention mechanism, on the other hand, allows the model to automatically focus on the critical areas of the defect information in the bearing vibration signals throughout the training phase, hence improving the network's performance and generalisation ability. Furthermore, the network aligns the joint distribution of source and target domain data across many particular levels using the Joint Maximum Mean Discrepancy approach to accomplish unsupervised domain adaptation. This allows the network to successfully transfer information learnt from the source domain data of the faulty bearing to the target domain of the faulty bearing, improving the model's generalisability on the target domain. This research tests the network on two datasets with varied working conditions, CWRU and Ottawa, and the findings demonstrate that the network is high robustness and accurate for multi-source domain transfer diagnosis in noisy environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
标致的小张同学完成签到,获得积分10
刚刚
酷波er应助楪祈爱着集采纳,获得10
1秒前
1秒前
老孟发布了新的文献求助10
1秒前
可爱藏今发布了新的文献求助10
2秒前
Z1987发布了新的文献求助10
2秒前
Matrix发布了新的文献求助30
2秒前
清歌浊酒发布了新的文献求助10
3秒前
3秒前
DQQ发布了新的文献求助10
3秒前
CipherSage应助xukaixuan001采纳,获得10
4秒前
斯文败类应助TaoJ采纳,获得10
4秒前
飘逸数据线完成签到,获得积分10
4秒前
诩珝栩发布了新的文献求助10
4秒前
tigger发布了新的文献求助10
5秒前
5秒前
ding应助YY采纳,获得10
5秒前
游游发布了新的文献求助10
6秒前
6秒前
失眠双双完成签到,获得积分10
6秒前
6秒前
yar应助木木采纳,获得10
6秒前
7秒前
7秒前
7秒前
FashionBoy应助cjdsb采纳,获得10
8秒前
电池golden完成签到,获得积分10
8秒前
8秒前
8秒前
JamesPei应助杨e采纳,获得10
8秒前
三木完成签到,获得积分10
9秒前
Z1987完成签到,获得积分10
9秒前
9秒前
CodeCraft应助King采纳,获得10
9秒前
Orange应助askaga采纳,获得10
9秒前
9秒前
9秒前
清歌浊酒完成签到,获得积分10
10秒前
Suzzne完成签到,获得积分10
10秒前
dyx发布了新的文献求助10
10秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
錢鍾書楊絳親友書札 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3296982
求助须知:如何正确求助?哪些是违规求助? 2932577
关于积分的说明 8457843
捐赠科研通 2605253
什么是DOI,文献DOI怎么找? 1422179
科研通“疑难数据库(出版商)”最低求助积分说明 661332
邀请新用户注册赠送积分活动 644534