Fault diagnosis of rolling bearing with variable working conditions in noisy environment based on dynamic soft threshold and attention mechanism

计算机科学 阈值 稳健性(进化) 方位(导航) 人工智能 噪音(视频) 断层(地质) 时域 模式识别(心理学) 计算机视觉 生物化学 基因 图像(数学) 地质学 地震学 化学
作者
Ankang Li,Dechen Yao,Jianwei Yang,Tao Zhou
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad9bd0
摘要

Abstract In response to the complex and variable working conditions faced by rolling bearings during actual operation, as well as the issue of vibration signal acquisition being easily disrupted by noise interference, the study describes the multi-source domain anti-noise rolling bearing failure detection approach (MEDThresNet). The purpose of this model's design is to solve the challenges of a lack of corresponding sample data and noisy signals in bearing fault classification. Using multi-condition source domains, as opposed to a single working condition source domain data, might help gain information from diverse domains and minimise overreliance on data from a specific working condition source domain. This can significantly increase the model's generalisation and robustness, and fault identification accuracy. Convolutional modules with soft thresholding and attention mechanisms are applied in this network structure. Soft thresholding helps to suppress noise in the data during the training phase while keeping critical characteristics. The attention mechanism, on the other hand, allows the model to automatically focus on the critical areas of the defect information in the bearing vibration signals throughout the training phase, hence improving the network's performance and generalisation ability. Furthermore, the network aligns the joint distribution of source and target domain data across many particular levels using the Joint Maximum Mean Discrepancy approach to accomplish unsupervised domain adaptation. This allows the network to successfully transfer information learnt from the source domain data of the faulty bearing to the target domain of the faulty bearing, improving the model's generalisability on the target domain. This research tests the network on two datasets with varied working conditions, CWRU and Ottawa, and the findings demonstrate that the network is high robustness and accurate for multi-source domain transfer diagnosis in noisy environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hsu关闭了Hsu文献求助
刚刚
1秒前
tdtk发布了新的文献求助30
1秒前
1秒前
springlrt完成签到,获得积分10
2秒前
JayeChen完成签到,获得积分10
2秒前
释然zc发布了新的文献求助10
3秒前
俊秀的芫完成签到,获得积分10
3秒前
3秒前
cach完成签到,获得积分10
3秒前
ruochenzu发布了新的文献求助10
3秒前
麦克完成签到,获得积分10
4秒前
紫萱完成签到,获得积分10
4秒前
现实的向梦完成签到,获得积分10
4秒前
4秒前
LL发布了新的文献求助10
4秒前
Rona完成签到,获得积分10
5秒前
丸子完成签到 ,获得积分10
5秒前
5秒前
月光完成签到 ,获得积分10
5秒前
彳亍完成签到,获得积分10
6秒前
kandie完成签到,获得积分10
6秒前
嘟嘟完成签到,获得积分10
6秒前
烟花应助菲菲呀采纳,获得10
6秒前
Allowsany完成签到,获得积分10
6秒前
7秒前
7秒前
8秒前
安详剑身发布了新的文献求助10
8秒前
科研通AI6应助SHUANG采纳,获得10
8秒前
彳亍发布了新的文献求助10
9秒前
9秒前
Joker完成签到,获得积分10
10秒前
10秒前
隐形曼青应助谢尔顿采纳,获得50
11秒前
无花果应助小哈采纳,获得10
11秒前
11秒前
三水发布了新的文献求助50
11秒前
hhchhcmxhf发布了新的文献求助10
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Guidelines for Characterization of Gas Turbine Engine Total-Pressure, Planar-Wave, and Total-Temperature Inlet-Flow Distortion 300
Stackable Smart Footwear Rack Using Infrared Sensor 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604564
求助须知:如何正确求助?哪些是违规求助? 4012871
关于积分的说明 12425263
捐赠科研通 3693482
什么是DOI,文献DOI怎么找? 2036342
邀请新用户注册赠送积分活动 1069364
科研通“疑难数据库(出版商)”最低求助积分说明 953871