Fault diagnosis of rolling bearing with variable working conditions in noisy environment based on dynamic soft threshold and attention mechanism

计算机科学 阈值 稳健性(进化) 方位(导航) 人工智能 噪音(视频) 断层(地质) 时域 模式识别(心理学) 计算机视觉 生物化学 化学 地震学 图像(数学) 基因 地质学
作者
Ankang Li,Dechen Yao,Jianwei Yang,Tao Zhou
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad9bd0
摘要

Abstract In response to the complex and variable working conditions faced by rolling bearings during actual operation, as well as the issue of vibration signal acquisition being easily disrupted by noise interference, the study describes the multi-source domain anti-noise rolling bearing failure detection approach (MEDThresNet). The purpose of this model's design is to solve the challenges of a lack of corresponding sample data and noisy signals in bearing fault classification. Using multi-condition source domains, as opposed to a single working condition source domain data, might help gain information from diverse domains and minimise overreliance on data from a specific working condition source domain. This can significantly increase the model's generalisation and robustness, and fault identification accuracy. Convolutional modules with soft thresholding and attention mechanisms are applied in this network structure. Soft thresholding helps to suppress noise in the data during the training phase while keeping critical characteristics. The attention mechanism, on the other hand, allows the model to automatically focus on the critical areas of the defect information in the bearing vibration signals throughout the training phase, hence improving the network's performance and generalisation ability. Furthermore, the network aligns the joint distribution of source and target domain data across many particular levels using the Joint Maximum Mean Discrepancy approach to accomplish unsupervised domain adaptation. This allows the network to successfully transfer information learnt from the source domain data of the faulty bearing to the target domain of the faulty bearing, improving the model's generalisability on the target domain. This research tests the network on two datasets with varied working conditions, CWRU and Ottawa, and the findings demonstrate that the network is high robustness and accurate for multi-source domain transfer diagnosis in noisy environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
文艺丹珍发布了新的文献求助10
1秒前
Tayzon完成签到,获得积分10
1秒前
kinmke完成签到,获得积分10
1秒前
研友_VZG7GZ应助LL采纳,获得10
1秒前
1秒前
asdfqwer应助杰尼龟采纳,获得10
2秒前
2秒前
2秒前
英姑应助遇见采纳,获得10
3秒前
Hello应助Ethan采纳,获得10
3秒前
漂亮夏兰完成签到 ,获得积分10
4秒前
JamesPei应助LEOhard采纳,获得10
4秒前
4秒前
yookia应助大气傲之采纳,获得10
5秒前
hai发布了新的文献求助10
6秒前
6秒前
半夏发布了新的文献求助10
6秒前
云下发布了新的文献求助10
6秒前
weixiaosi发布了新的文献求助10
6秒前
7秒前
7秒前
SciGPT应助贤yu采纳,获得10
7秒前
8秒前
ww完成签到,获得积分10
8秒前
SYLH应助啊哈采纳,获得20
9秒前
9秒前
10秒前
10秒前
11秒前
含蓄文博完成签到 ,获得积分10
11秒前
田様应助hai采纳,获得10
11秒前
123发布了新的文献求助10
12秒前
刘雨森完成签到 ,获得积分10
13秒前
大大怪发布了新的文献求助10
13秒前
小马甲应助guantlv采纳,获得10
13秒前
李成恩完成签到 ,获得积分10
14秒前
淡然冬灵发布了新的文献求助10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954099
求助须知:如何正确求助?哪些是违规求助? 3500131
关于积分的说明 11098052
捐赠科研通 3230564
什么是DOI,文献DOI怎么找? 1786012
邀请新用户注册赠送积分活动 869802
科研通“疑难数据库(出版商)”最低求助积分说明 801594