Development of compositionality through interactive learning of language and action of robots

组合性原则 计算机科学 人工智能 一般化 动词 推论 名词 联想学习 自然语言处理 认知科学 认知心理学 心理学 数学分析 数学
作者
Prasanna Vijayaraghavan,Jeffrey Queißer,Sergio Verduzco-Flores,Jun Tani
出处
期刊:Science robotics [American Association for the Advancement of Science (AAAS)]
卷期号:10 (98)
标识
DOI:10.1126/scirobotics.adp0751
摘要

Humans excel at applying learned behavior to unlearned situations. A crucial component of this generalization behavior is our ability to compose/decompose a whole into reusable parts, an attribute known as compositionality. One of the fundamental questions in robotics concerns this characteristic: How can linguistic compositionality be developed concomitantly with sensorimotor skills through associative learning, particularly when individuals only learn partial linguistic compositions and their corresponding sensorimotor patterns? To address this question, we propose a brain-inspired neural network model that integrates vision, proprioception, and language into a framework of predictive coding and active inference on the basis of the free-energy principle. The effectiveness and capabilities of this model were assessed through various simulation experiments conducted with a robot arm. Our results show that generalization in learning to unlearned verb-noun compositions is significantly enhanced when training variations of task composition are increased. We attribute this to self-organized compositional structures in linguistic latent state space being influenced substantially by sensorimotor learning. Ablation studies show that visual attention and working memory are essential to accurately generate visuomotor sequences to achieve linguistically represented goals. These insights advance our understanding of mechanisms underlying development of compositionality through interactions of linguistic and sensorimotor experience.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
4秒前
4秒前
lyly发布了新的文献求助10
4秒前
LHT发布了新的文献求助10
5秒前
明亮如冰完成签到 ,获得积分10
5秒前
小林是我发布了新的文献求助10
5秒前
shine发布了新的文献求助10
5秒前
希望天下0贩的0应助xmhxpz采纳,获得10
7秒前
完美世界应助hbzyydx46采纳,获得20
8秒前
haosu应助菜菜采纳,获得10
8秒前
毛豆应助MGSansan采纳,获得10
8秒前
眼睛大的傲菡完成签到,获得积分10
9秒前
10秒前
含蓄的如松完成签到,获得积分10
12秒前
1953发布了新的文献求助10
13秒前
科研通AI2S应助hachii采纳,获得10
14秒前
15秒前
16秒前
搜集达人应助Cloud采纳,获得10
16秒前
xioayu完成签到 ,获得积分10
17秒前
19秒前
19秒前
北风完成签到,获得积分10
22秒前
完美世界应助LHT采纳,获得10
22秒前
酷波er应助遥感小虫采纳,获得10
23秒前
23秒前
五月完成签到 ,获得积分10
24秒前
24秒前
24秒前
loski发布了新的文献求助10
24秒前
rajvsvj发布了新的文献求助10
26秒前
26秒前
Ansong完成签到,获得积分10
26秒前
29秒前
29秒前
30秒前
31秒前
shine完成签到 ,获得积分10
31秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3458771
求助须知:如何正确求助?哪些是违规求助? 3053518
关于积分的说明 9036928
捐赠科研通 2742726
什么是DOI,文献DOI怎么找? 1504524
科研通“疑难数据库(出版商)”最低求助积分说明 695319
邀请新用户注册赠送积分活动 694519