光动力疗法
材料科学
荧光
电致发光
纳米技术
光电子学
红灯
光化学
化学
光学
有机化学
物理
植物
图层(电子)
生物
作者
Hui Wang,Yijian Gao,Jia‐Xiong Chen,Xiao‐Chun Fan,Yi‐Zhong Shi,Jia Yu,Kai Wang,Shengliang Li,Chun‐Sing Lee,Xiaohong Zhang
出处
期刊:ACS Nano
[American Chemical Society]
日期:2025-01-09
标识
DOI:10.1021/acsnano.4c14129
摘要
Thermally activated delayed fluorescence (TADF) materials have received increasing attention from organic electronics to other related fields, such as bioapplications and photocatalysts. However, it remains a challenging task for TADF emitters to showcase the versatility concurrent with high performance in multiple applications. Herein, we first present such a proof-of-concept TADF material, namely, QCN-SAC, through strategically manipulating exciton dynamics. On the one hand, QCN-SAC displays obvious aggregate-induced deep-red/near-infrared emission with a high radiative rate beyond 107 s–1, thereby demonstrating nearly 100% exciton utilization under oxygen-free conditions. In a QCN-SAC-based nondoped organic light-emitting diode (OLED), a superb external quantum efficiency of 16.4% can be reached with a peak at 708 nm. On the other hand, QCN-SAC also exhibits a high intersystem crossing rate over 108 s–1 without leveraging the heavy-atom effect, which makes QCN-SAC-based nanoparticles perform well in boosting reactive oxygen species generation for imaging-guided photodynamic therapy (PDT). This work presents a fundamental principle for designing high-performance all-in-one TADF molecules for OLED and PDT applications. This discovery holds promise for advancing the development of versatile TADF materials with a range of uses in the near future.
科研通智能强力驱动
Strongly Powered by AbleSci AI