Electrocardiogram-based machine learning for risk stratification of patients with suspected acute coronary syndrome

医学 四分位间距 胸痛 急性冠脉综合征 内科学 队列 弗雷明翰风险评分 死亡率 优势比 机器学习 心肌梗塞 计算机科学 疾病
作者
Zeineb Bouzid,Ervin Sejdić,Christian Martin‐Gill,Ziad Faramand,Stephanie Frisch,Mohammad Alrawashdeh,Stephanie Helman,Tanmay Gokhale,Nathan T. Riek,Karina Kraevsky-Phillips,Richard E. Gregg,Susan M. Sereika,Gilles Clermont,Murat Akçakaya,Jessica K. Zègre‐Hemsey,Samir Saba,Clifton W. Callaway,Salah S. Al‐Zaiti
出处
期刊:European Heart Journal [Oxford University Press]
标识
DOI:10.1093/eurheartj/ehae880
摘要

Abstract Background and Aims The importance of risk stratification in patients with chest pain extends beyond diagnosis and immediate treatment. This study sought to evaluate the prognostic value of electrocardiogram feature-based machine learning models to risk-stratify all-cause mortality in those with chest pain. Methods This was a prospective observational cohort study of consecutive, non-traumatic patients with chest pain. All-cause death was ascertained from multiple sources, including the CDC National Death Index registry. Six machine learning models were trained for survival analysis using 73 morphological electrocardiogram features (80% training with 10-fold cross-validation and 20% testing), followed by a variational Bayesian Gaussian mixture model to define distinct risk groups. The resulting classification performance was compared against the HEART score. Results The derivation cohort included 4015 patients (age 59 ± 16 years, 47% women). The mortality rate was 20.3% after a median follow-up period of 3.05 years (interquartile range 1.75–5.32). Extra Survival Trees outperformed other forecasting models, and the derived risk groups successfully classified patients into low-, moderate-, and high-risk groups (log-rank test statistic = 121.14, P < .001). This model outperformed the HEART score, reducing the rate of missed events by >90% with a negative predictive value and sensitivity of 93.4% and 85.9%, compared to 89.0% and 75.0%, respectively. In an independent external testing cohort (N = 3095, age 59 ± 15 years, 44% women, 30-day mortality 3.5%), patients in the moderate [odds ratio 3.62 (1.35–9.74)] and high [odds ratio 6.12 (2.38–15.75)] risk groups had significantly higher odds of mortality compared to those in the low-risk group. Conclusions The externally validated machine learning-based model, exclusively utilizing features from the 12-lead electrocardiogram, outperformed the HEART score in stratifying the mortality risk of patients with acute chest pain. This may have the potential to impact the precision of care delivery and the allocation of resources to those at highest risk of adverse events.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
马丹娜发布了新的文献求助10
1秒前
2秒前
歪比巴卜发布了新的文献求助20
3秒前
3秒前
4秒前
4秒前
5秒前
味子橘完成签到 ,获得积分10
5秒前
zxy发布了新的文献求助10
6秒前
蔓越莓蛋糕应助xiongdi521采纳,获得30
7秒前
洪焕良发布了新的文献求助10
7秒前
风至完成签到,获得积分10
7秒前
7秒前
程实完成签到,获得积分10
8秒前
nene发布了新的文献求助10
9秒前
yznfly应助科研通管家采纳,获得20
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
yznfly应助科研通管家采纳,获得20
9秒前
yuuuuukra发布了新的文献求助20
9秒前
慕青应助科研通管家采纳,获得10
9秒前
所所应助科研通管家采纳,获得10
10秒前
JamesPei应助科研通管家采纳,获得10
10秒前
852应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
10秒前
研友Zby14n发布了新的文献求助10
10秒前
tamo完成签到,获得积分10
11秒前
11秒前
12秒前
13秒前
火星上稀完成签到 ,获得积分10
13秒前
15秒前
科研通AI2S应助歪比巴卜采纳,获得10
16秒前
17秒前
螳螂和煤气罐完成签到 ,获得积分10
17秒前
马丹娜完成签到,获得积分20
18秒前
陈咬金发布了新的文献求助10
18秒前
Jasper应助nene采纳,获得10
20秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962932
求助须知:如何正确求助?哪些是违规求助? 3508908
关于积分的说明 11143865
捐赠科研通 3241789
什么是DOI,文献DOI怎么找? 1791700
邀请新用户注册赠送积分活动 873095
科研通“疑难数据库(出版商)”最低求助积分说明 803579