Electrocardiogram-based machine learning for risk stratification of patients with suspected acute coronary syndrome

医学 四分位间距 胸痛 急性冠脉综合征 内科学 队列 弗雷明翰风险评分 死亡率 优势比 机器学习 心肌梗塞 疾病 计算机科学
作者
Zeineb Bouzid,Ervin Sejdić,Christian Martin‐Gill,Ziad Faramand,Stephanie Frisch,Mohammad Alrawashdeh,Stephanie Helman,Tanmay Gokhale,Nathan T. Riek,Karina Kraevsky-Phillips,Richard E. Gregg,Susan M. Sereika,Gilles Clermont,Murat Akçakaya,Jessica K. Zègre‐Hemsey,Samir Saba,Clifton W. Callaway,Salah S. Al‐Zaiti
出处
期刊:European Heart Journal [Oxford University Press]
标识
DOI:10.1093/eurheartj/ehae880
摘要

Abstract Background and Aims The importance of risk stratification in patients with chest pain extends beyond diagnosis and immediate treatment. This study sought to evaluate the prognostic value of electrocardiogram feature-based machine learning models to risk-stratify all-cause mortality in those with chest pain. Methods This was a prospective observational cohort study of consecutive, non-traumatic patients with chest pain. All-cause death was ascertained from multiple sources, including the CDC National Death Index registry. Six machine learning models were trained for survival analysis using 73 morphological electrocardiogram features (80% training with 10-fold cross-validation and 20% testing), followed by a variational Bayesian Gaussian mixture model to define distinct risk groups. The resulting classification performance was compared against the HEART score. Results The derivation cohort included 4015 patients (age 59 ± 16 years, 47% women). The mortality rate was 20.3% after a median follow-up period of 3.05 years (interquartile range 1.75–5.32). Extra Survival Trees outperformed other forecasting models, and the derived risk groups successfully classified patients into low-, moderate-, and high-risk groups (log-rank test statistic = 121.14, P < .001). This model outperformed the HEART score, reducing the rate of missed events by >90% with a negative predictive value and sensitivity of 93.4% and 85.9%, compared to 89.0% and 75.0%, respectively. In an independent external testing cohort (N = 3095, age 59 ± 15 years, 44% women, 30-day mortality 3.5%), patients in the moderate [odds ratio 3.62 (1.35–9.74)] and high [odds ratio 6.12 (2.38–15.75)] risk groups had significantly higher odds of mortality compared to those in the low-risk group. Conclusions The externally validated machine learning-based model, exclusively utilizing features from the 12-lead electrocardiogram, outperformed the HEART score in stratifying the mortality risk of patients with acute chest pain. This may have the potential to impact the precision of care delivery and the allocation of resources to those at highest risk of adverse events.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我思故我在完成签到,获得积分0
刚刚
合适的毛豆完成签到,获得积分10
刚刚
2秒前
小廖完成签到,获得积分10
3秒前
yibo完成签到,获得积分10
3秒前
夏阁完成签到,获得积分10
4秒前
HUAN完成签到,获得积分10
5秒前
6秒前
靜心完成签到 ,获得积分10
7秒前
火星上的糖豆完成签到,获得积分10
7秒前
Zengyuan发布了新的文献求助10
7秒前
hss完成签到 ,获得积分10
8秒前
健忘的金完成签到 ,获得积分10
10秒前
10秒前
11秒前
WDW完成签到,获得积分10
12秒前
狂野白梅完成签到,获得积分10
12秒前
xixi789完成签到,获得积分10
12秒前
Zengyuan完成签到,获得积分10
13秒前
超级小飞侠完成签到 ,获得积分10
14秒前
15秒前
传奇3应助AFsumo采纳,获得10
16秒前
顾矜应助YC采纳,获得10
16秒前
楚寅完成签到 ,获得积分10
16秒前
咖喱鸡完成签到,获得积分10
19秒前
科研菜鸟完成签到,获得积分10
20秒前
粗心的邴完成签到 ,获得积分10
20秒前
欣喜的薯片完成签到 ,获得积分10
22秒前
Messi发布了新的文献求助10
23秒前
amongferns完成签到,获得积分10
23秒前
9羊关注了科研通微信公众号
24秒前
24秒前
24秒前
圆月弯刀完成签到 ,获得积分10
27秒前
愉快的宛秋完成签到,获得积分10
28秒前
AFsumo发布了新的文献求助10
29秒前
飞飛飝完成签到,获得积分10
29秒前
诚心的冰露完成签到,获得积分10
29秒前
卢浩完成签到,获得积分10
29秒前
啦啦啦发布了新的文献求助10
31秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3339325
求助须知:如何正确求助?哪些是违规求助? 2967232
关于积分的说明 8629016
捐赠科研通 2646705
什么是DOI,文献DOI怎么找? 1449319
科研通“疑难数据库(出版商)”最低求助积分说明 671343
邀请新用户注册赠送积分活动 660216