已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Dual Zn5‐NiS4 Sites in a Redox‐Active Metal‐Organic Framework Enables Efficient Cascade Catalysis for Nitrate‐to‐ammonia Conversion

化学 亚硝酸盐 氧化还原 催化作用 无机化学 硝酸盐 双金属片 有机化学
作者
Zedong Zhang,Yang Lv,Yuming Gu,Xiao‐Cheng Zhou,Bailin Tian,Anqi Zhang,Zhimei Yang,Shizheng Chen,Jing Ma,Mengning Ding,Jing‐Lin Zuo
出处
期刊:Angewandte Chemie [Wiley]
标识
DOI:10.1002/ange.202418272
摘要

Electrocatalytic Nitrate Reduction to Ammonia (eNO3RR) offers a promising solution to both environmental pollution and the sustainable energy conversion. Here we propose an efficient cascade catalytic mechanism based on a dual Zn5‐NiS4 sites, orderly assembled in a redox‐active metal‐organic framework structure, which separately promotes the reaction kinetics of nitrate‐to‐nitrite and nitrite‐to‐ammonia conversions. Specifically, the Zn5 clusters adsorb and selectively reduce the NO3− to NO2−, whereas [NiS4] acts as an analogue to the ferredoxins, subsequently boosts the reduction of NO2− to produce NH3. To this end, the bimetallic Zn5‐NiS4TP MOF was synthesized based on the redox‐active ligand [Ni(C2S2(TPCOOH)2)2]. A maximum ammonia production rate of 23650.63 µg·h−1·mg−1site and faradaic efficiency 92.57% was achived by Zn5‐NiS4TP MOF under neutral conditions. To validate the critical role of dual Zn5‐NiS4 sites, Mn5‐NiS4TP and Cd2‐NiS4TP were synthesized as control samples, together with Zn‐TTFTB, Zn‐NiS4Ph and other Zn5‐cluster‐based MOFs applied for the investigation of electrocatalytic nitrate reduction. Our results indicated that substitution by ‐thienyl instead of ‐phenyl group increases the S‐heteroatom content, improves the conductivity and facilitates electron transfer. Furthermore, Density Functional Theory (DFT) calculations of the energy changes for the reduction of each species could rationalize experimental results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
隐形曼青应助zmh采纳,获得10
1秒前
nicheng完成签到,获得积分10
1秒前
4秒前
怡然远望完成签到 ,获得积分10
4秒前
Iceyxi发布了新的文献求助10
7秒前
上官若男应助krajicek采纳,获得10
7秒前
huang发布了新的文献求助10
10秒前
思源应助Jane采纳,获得10
11秒前
12秒前
15秒前
Hello应助Bonnie采纳,获得10
16秒前
今天没烦恼完成签到 ,获得积分10
17秒前
qqqqq99发布了新的文献求助10
17秒前
深情安青应助xiaolu采纳,获得10
18秒前
星辰大海应助xiaolu采纳,获得10
18秒前
星辰大海应助xiaolu采纳,获得10
18秒前
Ava应助xiaolu采纳,获得10
18秒前
大模型应助xiaolu采纳,获得10
18秒前
田様应助xiaolu采纳,获得10
18秒前
彭于晏应助xiaolu采纳,获得10
18秒前
小二郎应助xiaolu采纳,获得10
18秒前
田様应助xiaolu采纳,获得10
18秒前
顾矜应助xiaolu采纳,获得10
18秒前
20秒前
20秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
21秒前
Iceyxi完成签到,获得积分10
22秒前
23秒前
认真平蝶完成签到 ,获得积分10
25秒前
25秒前
星辰大海应助qqqqq99采纳,获得10
26秒前
26秒前
Jane发布了新的文献求助10
26秒前
26秒前
27秒前
大个应助海绵徐采纳,获得10
30秒前
vivia发布了新的文献求助10
31秒前
情怀应助Liu采纳,获得10
31秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3471274
求助须知:如何正确求助?哪些是违规求助? 3064220
关于积分的说明 9087832
捐赠科研通 2754974
什么是DOI,文献DOI怎么找? 1511673
邀请新用户注册赠送积分活动 698575
科研通“疑难数据库(出版商)”最低求助积分说明 698423