Non-local structured adaptive dictionary learning method for seismic waveform inversion

稳健性(进化) 先验概率 正规化(语言学) 算法 反演(地质) 计算机科学 数学优化 稀疏逼近 数学 人工智能 古生物学 贝叶斯概率 生物化学 化学 构造盆地 生物 基因
作者
H. R. Qi,Zhenwu Fu,Yang Li,Bo Han
出处
期刊:Inverse Problems [IOP Publishing]
卷期号:40 (12): 125024-125024
标识
DOI:10.1088/1361-6420/ad9774
摘要

Abstract Full waveform inversion (FWI) is a technique used to estimate subsurface model parameters by minimizing the difference between observed and calculated seismic data. Sparsity-promoting regularization are useful tools for traditional FWI methods to tackle complex subsurface structures. Since the traditional regularization techniques can only impose some fixed priors, it is necessary to develop a regularization strategy to obtain more flexible priors. In this way, we develop a structural sparse representation method that exploits the non-local self-similarity prior of the model, which is achieved by grouping similar patches using graph matching operators and a dynamic group selection strategy. A group-based dictionary is trained with the aim of providing the best sparse representation of complex features and variations in the entire model perturbation. The dynamic selection strategy of the training method can balance computational efficiency and inversion accuracy by constantly updating and retaining groups during the processing. In addition, two loop algorithm framework is utilized to enhance the robustness and the efficiency of the proposed method. Numerical experiments are presented to demonstrate that the proposed method outperforms the total variation regularization method and the adaptive dictionary learning with non-local self-similarity in terms of robustness and resolution. This structural sparsity-promoting regularization is incorporated into the FWI problem through a two-loop algorithm framework, enhancing the robustness and efficiency of FWI results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助LKX采纳,获得10
刚刚
2秒前
2秒前
绿绿完成签到,获得积分10
4秒前
张同学发布了新的文献求助10
6秒前
小梦发布了新的文献求助10
6秒前
7秒前
飞飞发布了新的文献求助10
8秒前
12秒前
13秒前
LKX完成签到,获得积分10
13秒前
无魇完成签到,获得积分10
14秒前
大方绿兰完成签到 ,获得积分10
16秒前
刘梦圆发布了新的文献求助10
19秒前
LKX发布了新的文献求助10
20秒前
活泼的手机完成签到,获得积分10
20秒前
修脚大师发布了新的文献求助20
21秒前
吴雨木目完成签到 ,获得积分10
22秒前
Liu发布了新的文献求助10
23秒前
喜悦曼荷完成签到 ,获得积分10
25秒前
25秒前
YL发布了新的文献求助10
26秒前
27秒前
29秒前
29秒前
bkagyin应助beiyangtidu采纳,获得30
30秒前
bin发布了新的文献求助30
31秒前
32秒前
35秒前
伶俐问薇完成签到,获得积分20
35秒前
在水一方应助ChenYX采纳,获得10
36秒前
SciGPT应助爱做实验的泡利采纳,获得10
36秒前
华仔应助wonder采纳,获得10
37秒前
迟迟发布了新的文献求助10
38秒前
充电宝应助美味肉蟹煲采纳,获得10
38秒前
正直的白羊完成签到 ,获得积分10
38秒前
ebangdeng完成签到,获得积分10
39秒前
beiyangtidu完成签到,获得积分10
39秒前
Hello应助单于万言采纳,获得10
40秒前
littlepuppy发布了新的文献求助10
41秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The diagnosis of sex before birth using cells from the amniotic fluid (a preliminary report) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229344
求助须知:如何正确求助?哪些是违规求助? 2877046
关于积分的说明 8197662
捐赠科研通 2544371
什么是DOI,文献DOI怎么找? 1374357
科研通“疑难数据库(出版商)”最低求助积分说明 646946
邀请新用户注册赠送积分活动 621742