Non-local structured adaptive dictionary learning method for seismic waveform inversion

稳健性(进化) 先验概率 正规化(语言学) 算法 反演(地质) 计算机科学 数学优化 稀疏逼近 数学 人工智能 生物化学 生物 基因 贝叶斯概率 构造盆地 古生物学 化学
作者
H. R. Qi,Zhenwu Fu,Yang Li,Bo Han
出处
期刊:Inverse Problems [IOP Publishing]
卷期号:40 (12): 125024-125024
标识
DOI:10.1088/1361-6420/ad9774
摘要

Abstract Full waveform inversion (FWI) is a technique used to estimate subsurface model parameters by minimizing the difference between observed and calculated seismic data. Sparsity-promoting regularization are useful tools for traditional FWI methods to tackle complex subsurface structures. Since the traditional regularization techniques can only impose some fixed priors, it is necessary to develop a regularization strategy to obtain more flexible priors. In this way, we develop a structural sparse representation method that exploits the non-local self-similarity prior of the model, which is achieved by grouping similar patches using graph matching operators and a dynamic group selection strategy. A group-based dictionary is trained with the aim of providing the best sparse representation of complex features and variations in the entire model perturbation. The dynamic selection strategy of the training method can balance computational efficiency and inversion accuracy by constantly updating and retaining groups during the processing. In addition, two loop algorithm framework is utilized to enhance the robustness and the efficiency of the proposed method. Numerical experiments are presented to demonstrate that the proposed method outperforms the total variation regularization method and the adaptive dictionary learning with non-local self-similarity in terms of robustness and resolution. This structural sparsity-promoting regularization is incorporated into the FWI problem through a two-loop algorithm framework, enhancing the robustness and efficiency of FWI results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
咸柴完成签到,获得积分10
刚刚
Chenzhs完成签到,获得积分10
刚刚
yhp完成签到 ,获得积分10
1秒前
Auriga完成签到,获得积分10
1秒前
wzx发布了新的文献求助10
2秒前
2秒前
SY发布了新的文献求助10
3秒前
小马甲应助aaaaa22222采纳,获得10
3秒前
3秒前
laitomgpaomian完成签到 ,获得积分10
3秒前
zhu完成签到,获得积分10
4秒前
hsj完成签到,获得积分10
4秒前
麦瑞完成签到 ,获得积分20
4秒前
顾宇完成签到,获得积分10
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
所所应助坚强的笑天采纳,获得10
5秒前
ggdio发布了新的文献求助10
5秒前
Hello应助馨妈采纳,获得10
6秒前
JamesPei应助馨妈采纳,获得10
6秒前
7秒前
bkagyin应助L罗1采纳,获得10
7秒前
可爱的函函应助JL采纳,获得10
7秒前
呀呀呀完成签到,获得积分10
7秒前
充电宝应助焱冰采纳,获得10
7秒前
科研通AI6应助瘦瘦的南蕾采纳,获得10
7秒前
小青椒应助风清扬采纳,获得30
8秒前
8秒前
天天完成签到,获得积分10
9秒前
23XZYZN发布了新的文献求助30
9秒前
梅子完成签到 ,获得积分10
10秒前
上官若男应助张磊采纳,获得10
10秒前
清和漾完成签到,获得积分10
10秒前
Di发布了新的文献求助10
10秒前
wwe完成签到,获得积分10
10秒前
丘比特应助顾宇采纳,获得10
10秒前
10秒前
Yi完成签到,获得积分10
10秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5483532
求助须知:如何正确求助?哪些是违规求助? 4584237
关于积分的说明 14395715
捐赠科研通 4513936
什么是DOI,文献DOI怎么找? 2473733
邀请新用户注册赠送积分活动 1459777
关于科研通互助平台的介绍 1433177