Non-local structured adaptive dictionary learning method for seismic waveform inversion

稳健性(进化) 先验概率 正规化(语言学) 算法 反演(地质) 计算机科学 数学优化 稀疏逼近 数学 人工智能 生物化学 生物 基因 贝叶斯概率 构造盆地 古生物学 化学
作者
H. R. Qi,Zhenwu Fu,Yang Li,Bo Han
出处
期刊:Inverse Problems [IOP Publishing]
卷期号:40 (12): 125024-125024
标识
DOI:10.1088/1361-6420/ad9774
摘要

Abstract Full waveform inversion (FWI) is a technique used to estimate subsurface model parameters by minimizing the difference between observed and calculated seismic data. Sparsity-promoting regularization are useful tools for traditional FWI methods to tackle complex subsurface structures. Since the traditional regularization techniques can only impose some fixed priors, it is necessary to develop a regularization strategy to obtain more flexible priors. In this way, we develop a structural sparse representation method that exploits the non-local self-similarity prior of the model, which is achieved by grouping similar patches using graph matching operators and a dynamic group selection strategy. A group-based dictionary is trained with the aim of providing the best sparse representation of complex features and variations in the entire model perturbation. The dynamic selection strategy of the training method can balance computational efficiency and inversion accuracy by constantly updating and retaining groups during the processing. In addition, two loop algorithm framework is utilized to enhance the robustness and the efficiency of the proposed method. Numerical experiments are presented to demonstrate that the proposed method outperforms the total variation regularization method and the adaptive dictionary learning with non-local self-similarity in terms of robustness and resolution. This structural sparsity-promoting regularization is incorporated into the FWI problem through a two-loop algorithm framework, enhancing the robustness and efficiency of FWI results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
1秒前
科目三应助大意的小馒头采纳,获得10
1秒前
1秒前
TIGun完成签到,获得积分10
1秒前
Daniel发布了新的文献求助10
1秒前
2秒前
珀拉瑞丝应助开心的绮玉采纳,获得10
2秒前
英俊的铭应助笑点低紊采纳,获得10
2秒前
山水之乐发布了新的文献求助20
2秒前
3秒前
李健应助dudu采纳,获得10
3秒前
顾矜应助饭团不吃鱼采纳,获得10
4秒前
皆非完成签到,获得积分10
5秒前
合适孤兰发布了新的文献求助10
6秒前
6秒前
7秒前
zhBian发布了新的文献求助10
8秒前
9秒前
FashionBoy应助王碱采纳,获得10
10秒前
JamesPei应助惠惠采纳,获得10
11秒前
细心的冷雪完成签到,获得积分10
11秒前
小马儿完成签到,获得积分10
12秒前
zhBian完成签到,获得积分10
12秒前
不知终日梦为鱼完成签到,获得积分10
12秒前
胡民伟发布了新的文献求助10
12秒前
安小安发布了新的文献求助20
12秒前
如意猕猴桃完成签到 ,获得积分10
13秒前
13秒前
agrlook完成签到,获得积分10
14秒前
15秒前
Dnil完成签到,获得积分10
15秒前
15秒前
15秒前
16秒前
皆非发布了新的文献求助30
17秒前
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5394134
求助须知:如何正确求助?哪些是违规求助? 4515426
关于积分的说明 14053922
捐赠科研通 4426623
什么是DOI,文献DOI怎么找? 2431456
邀请新用户注册赠送积分活动 1423562
关于科研通互助平台的介绍 1402541