亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Non-local structured adaptive dictionary learning method for seismic waveform inversion

稳健性(进化) 先验概率 正规化(语言学) 算法 反演(地质) 计算机科学 数学优化 稀疏逼近 数学 人工智能 生物化学 生物 基因 贝叶斯概率 构造盆地 古生物学 化学
作者
H. R. Qi,Zhenwu Fu,Yang Li,Bo Han
出处
期刊:Inverse Problems [IOP Publishing]
卷期号:40 (12): 125024-125024
标识
DOI:10.1088/1361-6420/ad9774
摘要

Abstract Full waveform inversion (FWI) is a technique used to estimate subsurface model parameters by minimizing the difference between observed and calculated seismic data. Sparsity-promoting regularization are useful tools for traditional FWI methods to tackle complex subsurface structures. Since the traditional regularization techniques can only impose some fixed priors, it is necessary to develop a regularization strategy to obtain more flexible priors. In this way, we develop a structural sparse representation method that exploits the non-local self-similarity prior of the model, which is achieved by grouping similar patches using graph matching operators and a dynamic group selection strategy. A group-based dictionary is trained with the aim of providing the best sparse representation of complex features and variations in the entire model perturbation. The dynamic selection strategy of the training method can balance computational efficiency and inversion accuracy by constantly updating and retaining groups during the processing. In addition, two loop algorithm framework is utilized to enhance the robustness and the efficiency of the proposed method. Numerical experiments are presented to demonstrate that the proposed method outperforms the total variation regularization method and the adaptive dictionary learning with non-local self-similarity in terms of robustness and resolution. This structural sparsity-promoting regularization is incorporated into the FWI problem through a two-loop algorithm framework, enhancing the robustness and efficiency of FWI results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助小智采纳,获得10
7秒前
领导范儿应助ANAN1969采纳,获得10
8秒前
00完成签到,获得积分10
9秒前
11秒前
莫晓岚发布了新的文献求助80
14秒前
19秒前
小智发布了新的文献求助10
25秒前
NexusExplorer应助chenzheng采纳,获得10
33秒前
共享精神应助科研通管家采纳,获得10
59秒前
Ava应助科研通管家采纳,获得10
59秒前
ceeray23应助科研通管家采纳,获得10
59秒前
1分钟前
1分钟前
Chris完成签到 ,获得积分0
1分钟前
星启完成签到 ,获得积分10
1分钟前
01完成签到 ,获得积分10
1分钟前
小橘子吃傻子完成签到,获得积分10
1分钟前
1分钟前
1分钟前
lucky发布了新的文献求助10
1分钟前
1分钟前
山山完成签到,获得积分20
1分钟前
山山发布了新的文献求助10
1分钟前
1分钟前
苏苏发布了新的文献求助10
1分钟前
激情的代曼完成签到 ,获得积分10
1分钟前
光合作用完成签到,获得积分10
1分钟前
务实书包完成签到,获得积分10
1分钟前
爆米花应助小智采纳,获得10
1分钟前
1分钟前
浮游应助激情的代曼采纳,获得10
1分钟前
aaron完成签到,获得积分10
1分钟前
2分钟前
2分钟前
小龙完成签到,获得积分10
2分钟前
斯文败类应助科研猫头鹰采纳,获得10
2分钟前
小智发布了新的文献求助10
2分钟前
nxy完成签到 ,获得积分10
2分钟前
Owen应助EaRnn采纳,获得10
2分钟前
玫瑰遇上奶油完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Practical Methods for Aircraft and Rotorcraft Flight Control Design: An Optimization-Based Approach 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 831
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5413082
求助须知:如何正确求助?哪些是违规求助? 4530302
关于积分的说明 14122792
捐赠科研通 4445232
什么是DOI,文献DOI怎么找? 2439148
邀请新用户注册赠送积分活动 1431216
关于科研通互助平台的介绍 1408578