Non-local structured adaptive dictionary learning method for seismic waveform inversion

稳健性(进化) 先验概率 正规化(语言学) 算法 反演(地质) 计算机科学 数学优化 稀疏逼近 数学 人工智能 生物化学 生物 基因 贝叶斯概率 构造盆地 古生物学 化学
作者
H. R. Qi,Zhenwu Fu,Yang Li,Bo Han
出处
期刊:Inverse Problems [IOP Publishing]
卷期号:40 (12): 125024-125024
标识
DOI:10.1088/1361-6420/ad9774
摘要

Abstract Full waveform inversion (FWI) is a technique used to estimate subsurface model parameters by minimizing the difference between observed and calculated seismic data. Sparsity-promoting regularization are useful tools for traditional FWI methods to tackle complex subsurface structures. Since the traditional regularization techniques can only impose some fixed priors, it is necessary to develop a regularization strategy to obtain more flexible priors. In this way, we develop a structural sparse representation method that exploits the non-local self-similarity prior of the model, which is achieved by grouping similar patches using graph matching operators and a dynamic group selection strategy. A group-based dictionary is trained with the aim of providing the best sparse representation of complex features and variations in the entire model perturbation. The dynamic selection strategy of the training method can balance computational efficiency and inversion accuracy by constantly updating and retaining groups during the processing. In addition, two loop algorithm framework is utilized to enhance the robustness and the efficiency of the proposed method. Numerical experiments are presented to demonstrate that the proposed method outperforms the total variation regularization method and the adaptive dictionary learning with non-local self-similarity in terms of robustness and resolution. This structural sparsity-promoting regularization is incorporated into the FWI problem through a two-loop algorithm framework, enhancing the robustness and efficiency of FWI results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fan完成签到,获得积分10
刚刚
小二郎应助阿语采纳,获得10
刚刚
刚刚
刚刚
刚刚
首页发布了新的文献求助10
1秒前
AD应助简单采纳,获得10
1秒前
lonelymusic完成签到,获得积分10
1秒前
2秒前
XS_QI完成签到 ,获得积分10
3秒前
3秒前
烟花应助ccw采纳,获得10
4秒前
huxiaomin发布了新的文献求助10
4秒前
蛋蛋发布了新的文献求助10
4秒前
lc123完成签到,获得积分10
4秒前
思源应助changhaowenzzz采纳,获得10
5秒前
AD应助简单采纳,获得10
5秒前
lhs完成签到,获得积分10
6秒前
黎黎发布了新的文献求助10
6秒前
6秒前
6秒前
自信天空完成签到,获得积分20
6秒前
6秒前
吹梦西洲发布了新的文献求助10
6秒前
吉子发布了新的文献求助10
7秒前
夜夏完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
嘭嘭嘭发布了新的文献求助10
8秒前
8秒前
10秒前
半山发布了新的文献求助10
10秒前
10秒前
ggcfg完成签到,获得积分10
10秒前
10秒前
11秒前
ddnishi发布了新的文献求助10
11秒前
11秒前
JamesPei应助青葱鱼块采纳,获得10
12秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588259
求助须知:如何正确求助?哪些是违规求助? 4671299
关于积分的说明 14786793
捐赠科研通 4624766
什么是DOI,文献DOI怎么找? 2531723
邀请新用户注册赠送积分活动 1500308
关于科研通互助平台的介绍 1468262