Non-local structured adaptive dictionary learning method for seismic waveform inversion

稳健性(进化) 先验概率 正规化(语言学) 算法 反演(地质) 计算机科学 数学优化 稀疏逼近 数学 人工智能 生物化学 生物 基因 贝叶斯概率 构造盆地 古生物学 化学
作者
H. R. Qi,Zhenwu Fu,Yang Li,Bo Han
出处
期刊:Inverse Problems [IOP Publishing]
卷期号:40 (12): 125024-125024
标识
DOI:10.1088/1361-6420/ad9774
摘要

Abstract Full waveform inversion (FWI) is a technique used to estimate subsurface model parameters by minimizing the difference between observed and calculated seismic data. Sparsity-promoting regularization are useful tools for traditional FWI methods to tackle complex subsurface structures. Since the traditional regularization techniques can only impose some fixed priors, it is necessary to develop a regularization strategy to obtain more flexible priors. In this way, we develop a structural sparse representation method that exploits the non-local self-similarity prior of the model, which is achieved by grouping similar patches using graph matching operators and a dynamic group selection strategy. A group-based dictionary is trained with the aim of providing the best sparse representation of complex features and variations in the entire model perturbation. The dynamic selection strategy of the training method can balance computational efficiency and inversion accuracy by constantly updating and retaining groups during the processing. In addition, two loop algorithm framework is utilized to enhance the robustness and the efficiency of the proposed method. Numerical experiments are presented to demonstrate that the proposed method outperforms the total variation regularization method and the adaptive dictionary learning with non-local self-similarity in terms of robustness and resolution. This structural sparsity-promoting regularization is incorporated into the FWI problem through a two-loop algorithm framework, enhancing the robustness and efficiency of FWI results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
等待盼山完成签到,获得积分20
刚刚
1秒前
上官若男应助迷路的寄风采纳,获得10
1秒前
陈慕枫发布了新的文献求助10
2秒前
2秒前
顾矜应助开朗艳一采纳,获得10
3秒前
可爱的函函应助麦穗采纳,获得10
3秒前
哈哈哈完成签到,获得积分10
4秒前
彭于晏应助cherry采纳,获得10
4秒前
5秒前
易研学术发布了新的文献求助10
5秒前
123456789完成签到,获得积分10
5秒前
5秒前
zy发布了新的文献求助10
5秒前
6秒前
lawang发布了新的文献求助10
6秒前
无花果应助源西瓜采纳,获得10
7秒前
8秒前
陈慕枫完成签到,获得积分10
8秒前
丹丹发布了新的文献求助10
8秒前
9秒前
Ron完成签到,获得积分10
9秒前
太阳发布了新的文献求助10
9秒前
田様应助黄礼韬采纳,获得10
9秒前
10秒前
领导范儿应助ssxxx采纳,获得10
11秒前
金平卢仙发布了新的文献求助10
11秒前
12秒前
12秒前
Jojo发布了新的文献求助10
12秒前
13秒前
wanci应助失眠亦寒采纳,获得10
13秒前
13秒前
四氟乙烯发布了新的文献求助10
14秒前
14秒前
搞怪热狗完成签到,获得积分10
14秒前
14秒前
Lny应助qayqay003采纳,获得10
14秒前
今天放假了吗完成签到,获得积分10
14秒前
麦穗发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525344
求助须知:如何正确求助?哪些是违规求助? 4615587
关于积分的说明 14549232
捐赠科研通 4553605
什么是DOI,文献DOI怎么找? 2495428
邀请新用户注册赠送积分活动 1475975
关于科研通互助平台的介绍 1447716