Non-local structured adaptive dictionary learning method for seismic waveform inversion

稳健性(进化) 先验概率 正规化(语言学) 算法 反演(地质) 计算机科学 数学优化 稀疏逼近 数学 人工智能 生物化学 生物 基因 贝叶斯概率 构造盆地 古生物学 化学
作者
H. R. Qi,Zhenwu Fu,Yang Li,Bo Han
出处
期刊:Inverse Problems [IOP Publishing]
卷期号:40 (12): 125024-125024
标识
DOI:10.1088/1361-6420/ad9774
摘要

Abstract Full waveform inversion (FWI) is a technique used to estimate subsurface model parameters by minimizing the difference between observed and calculated seismic data. Sparsity-promoting regularization are useful tools for traditional FWI methods to tackle complex subsurface structures. Since the traditional regularization techniques can only impose some fixed priors, it is necessary to develop a regularization strategy to obtain more flexible priors. In this way, we develop a structural sparse representation method that exploits the non-local self-similarity prior of the model, which is achieved by grouping similar patches using graph matching operators and a dynamic group selection strategy. A group-based dictionary is trained with the aim of providing the best sparse representation of complex features and variations in the entire model perturbation. The dynamic selection strategy of the training method can balance computational efficiency and inversion accuracy by constantly updating and retaining groups during the processing. In addition, two loop algorithm framework is utilized to enhance the robustness and the efficiency of the proposed method. Numerical experiments are presented to demonstrate that the proposed method outperforms the total variation regularization method and the adaptive dictionary learning with non-local self-similarity in terms of robustness and resolution. This structural sparsity-promoting regularization is incorporated into the FWI problem through a two-loop algorithm framework, enhancing the robustness and efficiency of FWI results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助WWW采纳,获得10
刚刚
刚刚
刚刚
FashionBoy应助木南采纳,获得10
1秒前
樱书发布了新的文献求助10
2秒前
WWW发布了新的文献求助20
2秒前
叮当完成签到 ,获得积分10
3秒前
寻道图强应助安静柚子采纳,获得30
4秒前
简单发布了新的文献求助10
5秒前
jian发布了新的文献求助10
5秒前
6秒前
6秒前
小乖完成签到 ,获得积分10
6秒前
长情的沁完成签到,获得积分10
8秒前
8秒前
9秒前
香蕉诗蕊应助踏实凡阳采纳,获得10
9秒前
冷酷莫言发布了新的文献求助10
10秒前
星辰大海应助现代的手套采纳,获得10
10秒前
Jared应助凉白开采纳,获得10
11秒前
阿辉完成签到 ,获得积分10
12秒前
WWW发布了新的文献求助10
13秒前
zz发布了新的文献求助10
15秒前
木南发布了新的文献求助10
15秒前
16秒前
loyuanhao完成签到,获得积分20
16秒前
英勇的飞扬完成签到,获得积分10
17秒前
宋子虎完成签到 ,获得积分10
17秒前
17秒前
武愿完成签到,获得积分10
21秒前
21秒前
烟花应助科研通管家采纳,获得10
21秒前
大模型应助科研通管家采纳,获得10
21秒前
CodeCraft应助科研通管家采纳,获得10
21秒前
orixero应助科研通管家采纳,获得10
21秒前
21秒前
研友_VZG7GZ应助科研通管家采纳,获得10
21秒前
shi hui应助科研通管家采纳,获得10
21秒前
科研通AI6应助科研通管家采纳,获得10
21秒前
FashionBoy应助科研通管家采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560699
求助须知:如何正确求助?哪些是违规求助? 4646035
关于积分的说明 14677035
捐赠科研通 4587117
什么是DOI,文献DOI怎么找? 2516841
邀请新用户注册赠送积分活动 1490308
关于科研通互助平台的介绍 1461136