Non-local structured adaptive dictionary learning method for seismic waveform inversion

稳健性(进化) 先验概率 正规化(语言学) 算法 反演(地质) 计算机科学 数学优化 稀疏逼近 数学 人工智能 生物化学 生物 基因 贝叶斯概率 构造盆地 古生物学 化学
作者
H. R. Qi,Zhenwu Fu,Yang Li,Bo Han
出处
期刊:Inverse Problems [IOP Publishing]
卷期号:40 (12): 125024-125024
标识
DOI:10.1088/1361-6420/ad9774
摘要

Abstract Full waveform inversion (FWI) is a technique used to estimate subsurface model parameters by minimizing the difference between observed and calculated seismic data. Sparsity-promoting regularization are useful tools for traditional FWI methods to tackle complex subsurface structures. Since the traditional regularization techniques can only impose some fixed priors, it is necessary to develop a regularization strategy to obtain more flexible priors. In this way, we develop a structural sparse representation method that exploits the non-local self-similarity prior of the model, which is achieved by grouping similar patches using graph matching operators and a dynamic group selection strategy. A group-based dictionary is trained with the aim of providing the best sparse representation of complex features and variations in the entire model perturbation. The dynamic selection strategy of the training method can balance computational efficiency and inversion accuracy by constantly updating and retaining groups during the processing. In addition, two loop algorithm framework is utilized to enhance the robustness and the efficiency of the proposed method. Numerical experiments are presented to demonstrate that the proposed method outperforms the total variation regularization method and the adaptive dictionary learning with non-local self-similarity in terms of robustness and resolution. This structural sparsity-promoting regularization is incorporated into the FWI problem through a two-loop algorithm framework, enhancing the robustness and efficiency of FWI results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
顾矜应助Hah采纳,获得10
刚刚
2秒前
蜀黍发布了新的文献求助10
2秒前
3秒前
盛隆发布了新的文献求助10
3秒前
wanci应助可靠幻然采纳,获得10
3秒前
眯眯眼的世界完成签到,获得积分10
4秒前
打打应助Gu采纳,获得10
5秒前
哈哈哈发布了新的文献求助10
5秒前
丁真浩完成签到,获得积分10
6秒前
于晓露完成签到,获得积分10
6秒前
香蕉觅云应助旦皋采纳,获得10
6秒前
7秒前
sure发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
8秒前
玛卡巴卡发布了新的文献求助10
8秒前
8秒前
点一个随机昵称完成签到,获得积分10
9秒前
9秒前
溯溯完成签到 ,获得积分10
9秒前
冒昧硕完成签到,获得积分10
11秒前
意已完成签到,获得积分20
12秒前
NexusExplorer应助ke采纳,获得30
12秒前
蛰曜发布了新的文献求助10
12秒前
闲听花落发布了新的文献求助10
13秒前
年轻的夕阳关注了科研通微信公众号
13秒前
14秒前
充电宝应助哈哈哈哈采纳,获得10
14秒前
桐桐应助盛隆采纳,获得10
15秒前
16秒前
开朗成风完成签到 ,获得积分10
19秒前
cx发布了新的文献求助10
19秒前
桑小强完成签到,获得积分10
19秒前
所所应助yyj采纳,获得10
20秒前
lyt发布了新的文献求助10
20秒前
21秒前
22秒前
高兴的煎饼完成签到,获得积分10
22秒前
22秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125089
求助须知:如何正确求助?哪些是违规求助? 4329088
关于积分的说明 13489719
捐赠科研通 4163770
什么是DOI,文献DOI怎么找? 2282542
邀请新用户注册赠送积分活动 1283707
关于科研通互助平台的介绍 1222981