铜
电解
法拉第效率
烟气
电合成
选择性
催化作用
碳纤维
吸附
化学
联轴节(管道)
化学工程
无机化学
电化学
材料科学
电极
冶金
电解质
物理化学
有机化学
复合材料
工程类
复合数
作者
Wanfeng Yang,Yong Zhao,Yiqing Chen,Hangjuan Ren,Jiameng Sun,Zhangsheng Shi,Xindie Jin,Zhonghua Zhang,Xin Wang
标识
DOI:10.1002/anie.202422082
摘要
Electrocatalytic CO2 reduction (CO2R) to multi-carbon (C2+) products in strong acid presents a promising approach to mitigate the CO2 loss commonly encountered in alkaline and neutral systems. However, this process often suffers from low selectivity for C2+ products due to the competing C1 (e.g., CO and HCOOH) formation and complex C-C coupling kinetics. In this work, we report a CO2 coverage constraining strategy by diluting CO2 reactant feed to modulate the intermediate distribution and C-C coupling pathways for an enhanced electrosynthesis of C2+ products in strong acid. Lowering the CO2 feed concentration reduces CO2 coverage on copper catalyst, enriching the surface coverage and optimizing the adsorption configuration of the key CO intermediate for C-C coupling. This approach efficiently suppresses the formation of undesired C1 products. By employing a 20% CO2 feed, we achieved a significant improvement in C2+ Faradaic efficiency, reaching 68% at 100 mA cm-2, approximately 1.7 times higher than the 41% obtained using pure CO2. We demonstrated the direct electroreduction of a 30% CO2 feed - representative CO2 concentration of typical industrial flue gases - in a full electrolyzer, achieving a C2+ selectivity of 78% and an energy efficiency of 23% at 200 mA cm-2.
科研通智能强力驱动
Strongly Powered by AbleSci AI