EffNet: An efficient One-Dimensional Convolutional Neural Networks for efficient classification of long-term ECG fragments

人工智能 计算机科学 卷积神经网络 模式识别(心理学) 支持向量机 学习迁移 过采样 深度学习 超参数 人工神经网络 机器学习 计算机网络 带宽(计算)
作者
Bilal Ashraf,Husan Ali,Muhammad Aseer Khan,Fahad R. Albogamy
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
标识
DOI:10.1088/2057-1976/adb58a
摘要

Abstract Early Diagnosis of Cardiovascular disease (CVD) is essential to prevent a person from death in case of a cardiac arrhythmia. Automated ECG classification is required because manual classification by cardiologists is laborious, time-consuming, and prone to errors. Efficient ECG classification has been an active research problem over the past few decades. Earlier ECG classification techniques didn’t perform satisfactorily with greater accuracy and efficiency. An efficient 12-layer deep One-Dimensional Convolutional Neural Network (1D-CNN) titled EffNet is proposed in this research paper to automatically classify five distinct categories of heartbeats present in ECG signals. A unique collection of five different PhysioNet databases with ECG recordings of five different classes is created to enhance the dataset. These databases are segmented into ECG Fragments (long-term ECG signals of length 10-s) to effectively capture the ECG features between successive beats. These ECG fragments are then concatenated to form a merged dataset. Initially, sampling of the merged dataset is done. For balancing the dataset, Synthetic Minority Oversampling Technique (SMOTE) is used. Afterwards, 1D-CNN is employed with different sets of hyperparameters for the efficient classification of the ECG dataset. Classification of ECG of five different classes is also done through two deep Convolutional Neural Networks (CNNs), namely GoogLeNet and SqueezeNet, and Support Vector Machines (SVM). The statistical results obtained proved the dominance of EffNet over the transfer learning techniques (SqueezeNet and GoogLeNet) and SVM. Furthermore, a comparison is also made with the existing literature work carried out for ECG classification and the statistical results dominated over all others in terms of performance metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1226813885发布了新的文献求助10
1秒前
1秒前
yeyeye完成签到,获得积分10
2秒前
张张张xxx完成签到,获得积分10
2秒前
mary611完成签到,获得积分10
2秒前
乌龟娟完成签到,获得积分10
4秒前
默存发布了新的文献求助10
5秒前
Steffi完成签到,获得积分10
5秒前
科研通AI5应助张mingyu123采纳,获得10
5秒前
高高ai发布了新的文献求助10
5秒前
5秒前
5秒前
FashionBoy应助NTw_wzw采纳,获得10
6秒前
剑门侠客应助一点点脸红采纳,获得10
6秒前
domingo发布了新的文献求助30
6秒前
777完成签到,获得积分10
6秒前
鱼不鱼发布了新的文献求助10
6秒前
浮游应助李闻闻采纳,获得10
6秒前
47完成签到,获得积分10
7秒前
HMX完成签到,获得积分10
7秒前
7秒前
隐形曼青应助Fiona采纳,获得30
8秒前
香蕉觅云应助zSmart采纳,获得10
10秒前
英姑应助柔弱翎采纳,获得30
11秒前
11秒前
鱼不鱼完成签到,获得积分10
13秒前
14秒前
彭半梦发布了新的文献求助10
14秒前
env完成签到,获得积分10
15秒前
文艺的曼柔完成签到 ,获得积分10
15秒前
碧蓝的盼夏完成签到,获得积分10
15秒前
单薄茗完成签到,获得积分10
16秒前
16秒前
科研通AI6应助木棉哆哆采纳,获得10
16秒前
雪凝清霜发布了新的文献求助10
16秒前
17秒前
刘稀完成签到,获得积分10
17秒前
miaomiao完成签到,获得积分10
18秒前
陆菱柒发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5192215
求助须知:如何正确求助?哪些是违规求助? 4375198
关于积分的说明 13624085
捐赠科研通 4229463
什么是DOI,文献DOI怎么找? 2319944
邀请新用户注册赠送积分活动 1318415
关于科研通互助平台的介绍 1268598