EffNet: An efficient One-Dimensional Convolutional Neural Networks for efficient classification of long-term ECG fragments

人工智能 计算机科学 卷积神经网络 模式识别(心理学) 支持向量机 学习迁移 过采样 深度学习 超参数 人工神经网络 机器学习 计算机网络 带宽(计算)
作者
Bilal Ashraf,Husan Ali,Muhammad Aseer Khan,Fahad R. Albogamy
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
标识
DOI:10.1088/2057-1976/adb58a
摘要

Abstract Early Diagnosis of Cardiovascular disease (CVD) is essential to prevent a person from death in case of a cardiac arrhythmia. Automated ECG classification is required because manual classification by cardiologists is laborious, time-consuming, and prone to errors. Efficient ECG classification has been an active research problem over the past few decades. Earlier ECG classification techniques didn’t perform satisfactorily with greater accuracy and efficiency. An efficient 12-layer deep One-Dimensional Convolutional Neural Network (1D-CNN) titled EffNet is proposed in this research paper to automatically classify five distinct categories of heartbeats present in ECG signals. A unique collection of five different PhysioNet databases with ECG recordings of five different classes is created to enhance the dataset. These databases are segmented into ECG Fragments (long-term ECG signals of length 10-s) to effectively capture the ECG features between successive beats. These ECG fragments are then concatenated to form a merged dataset. Initially, sampling of the merged dataset is done. For balancing the dataset, Synthetic Minority Oversampling Technique (SMOTE) is used. Afterwards, 1D-CNN is employed with different sets of hyperparameters for the efficient classification of the ECG dataset. Classification of ECG of five different classes is also done through two deep Convolutional Neural Networks (CNNs), namely GoogLeNet and SqueezeNet, and Support Vector Machines (SVM). The statistical results obtained proved the dominance of EffNet over the transfer learning techniques (SqueezeNet and GoogLeNet) and SVM. Furthermore, a comparison is also made with the existing literature work carried out for ECG classification and the statistical results dominated over all others in terms of performance metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jenningseastera应助大虫子采纳,获得10
刚刚
1秒前
是苗苗丫完成签到,获得积分10
1秒前
梅林渔夫完成签到,获得积分10
1秒前
zeal发布了新的文献求助10
1秒前
石头发布了新的文献求助10
2秒前
lan完成签到 ,获得积分10
2秒前
闪闪飞柏完成签到,获得积分20
2秒前
ccmxigua发布了新的文献求助150
2秒前
3秒前
追梦完成签到 ,获得积分10
3秒前
zzz发布了新的文献求助10
4秒前
chenyawen发布了新的文献求助10
4秒前
Joy完成签到,获得积分10
4秒前
vidgers发布了新的文献求助10
4秒前
5秒前
5秒前
言欢欢发布了新的文献求助10
6秒前
默默的聪健完成签到,获得积分10
6秒前
大方幻珊完成签到 ,获得积分10
6秒前
淳于白凝发布了新的文献求助10
6秒前
meng完成签到,获得积分10
6秒前
可爱的函函应助维尼熊采纳,获得10
7秒前
ainan发布了新的文献求助10
7秒前
炸鸡加热完成签到,获得积分10
7秒前
lql完成签到,获得积分10
7秒前
Xx应助萌酱采纳,获得10
7秒前
一派倾城完成签到,获得积分10
8秒前
柔弱的面包完成签到,获得积分10
8秒前
精明的小馒头完成签到 ,获得积分10
8秒前
852应助谭金钰采纳,获得10
9秒前
9秒前
彭于晏应助小雨采纳,获得10
9秒前
wgy发布了新的文献求助10
9秒前
10秒前
10秒前
平常的迎夏完成签到,获得积分10
10秒前
重要尔曼完成签到,获得积分10
11秒前
小猪佩奇发布了新的文献求助10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Research Handbook on Law and Political Economy Second Edition 398
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4554852
求助须知:如何正确求助?哪些是违规求助? 3983633
关于积分的说明 12332260
捐赠科研通 3653513
什么是DOI,文献DOI怎么找? 2012588
邀请新用户注册赠送积分活动 1047586
科研通“疑难数据库(出版商)”最低求助积分说明 936051