EffNet: An efficient One-Dimensional Convolutional Neural Networks for efficient classification of long-term ECG fragments

人工智能 计算机科学 卷积神经网络 模式识别(心理学) 支持向量机 学习迁移 过采样 深度学习 超参数 人工神经网络 机器学习 计算机网络 带宽(计算)
作者
Bilal Ashraf,Husan Ali,Muhammad Aseer Khan,Fahad R. Albogamy
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
标识
DOI:10.1088/2057-1976/adb58a
摘要

Abstract Early Diagnosis of Cardiovascular disease (CVD) is essential to prevent a person from death in case of a cardiac arrhythmia. Automated ECG classification is required because manual classification by cardiologists is laborious, time-consuming, and prone to errors. Efficient ECG classification has been an active research problem over the past few decades. Earlier ECG classification techniques didn’t perform satisfactorily with greater accuracy and efficiency. An efficient 12-layer deep One-Dimensional Convolutional Neural Network (1D-CNN) titled EffNet is proposed in this research paper to automatically classify five distinct categories of heartbeats present in ECG signals. A unique collection of five different PhysioNet databases with ECG recordings of five different classes is created to enhance the dataset. These databases are segmented into ECG Fragments (long-term ECG signals of length 10-s) to effectively capture the ECG features between successive beats. These ECG fragments are then concatenated to form a merged dataset. Initially, sampling of the merged dataset is done. For balancing the dataset, Synthetic Minority Oversampling Technique (SMOTE) is used. Afterwards, 1D-CNN is employed with different sets of hyperparameters for the efficient classification of the ECG dataset. Classification of ECG of five different classes is also done through two deep Convolutional Neural Networks (CNNs), namely GoogLeNet and SqueezeNet, and Support Vector Machines (SVM). The statistical results obtained proved the dominance of EffNet over the transfer learning techniques (SqueezeNet and GoogLeNet) and SVM. Furthermore, a comparison is also made with the existing literature work carried out for ECG classification and the statistical results dominated over all others in terms of performance metrics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
量子星尘发布了新的文献求助10
1秒前
呵呵呵呵发布了新的文献求助10
1秒前
ding应助学术脑袋采纳,获得10
1秒前
1秒前
2秒前
2秒前
2秒前
思源应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
倒逆之蝶应助科研通管家采纳,获得10
2秒前
静好发布了新的文献求助10
2秒前
思源应助科研通管家采纳,获得10
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
倒逆之蝶应助科研通管家采纳,获得10
2秒前
麻婆肉丝发布了新的文献求助10
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
ding应助科研通管家采纳,获得10
2秒前
bkagyin应助科研通管家采纳,获得10
2秒前
英姑应助科研通管家采纳,获得10
2秒前
852应助科研通管家采纳,获得10
2秒前
Gstar发布了新的文献求助10
2秒前
Ava应助科研通管家采纳,获得10
3秒前
倒逆之蝶应助科研通管家采纳,获得10
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
czt完成签到,获得积分10
3秒前
Ava应助科研通管家采纳,获得10
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
顾矜应助科研通管家采纳,获得10
3秒前
3秒前
Hello应助科研通管家采纳,获得10
3秒前
今后应助科研通管家采纳,获得10
3秒前
桐桐应助科研通管家采纳,获得10
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5727744
求助须知:如何正确求助?哪些是违规求助? 5309981
关于积分的说明 15312237
捐赠科研通 4875187
什么是DOI,文献DOI怎么找? 2618600
邀请新用户注册赠送积分活动 1568248
关于科研通互助平台的介绍 1524927