EffNet: An efficient One-Dimensional Convolutional Neural Networks for efficient classification of long-term ECG fragments

人工智能 计算机科学 卷积神经网络 模式识别(心理学) 支持向量机 学习迁移 过采样 深度学习 超参数 人工神经网络 机器学习 计算机网络 带宽(计算)
作者
Bilal Ashraf,Husan Ali,Muhammad Aseer Khan,Fahad R. Albogamy
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
标识
DOI:10.1088/2057-1976/adb58a
摘要

Abstract Early Diagnosis of Cardiovascular disease (CVD) is essential to prevent a person from death in case of a cardiac arrhythmia. Automated ECG classification is required because manual classification by cardiologists is laborious, time-consuming, and prone to errors. Efficient ECG classification has been an active research problem over the past few decades. Earlier ECG classification techniques didn’t perform satisfactorily with greater accuracy and efficiency. An efficient 12-layer deep One-Dimensional Convolutional Neural Network (1D-CNN) titled EffNet is proposed in this research paper to automatically classify five distinct categories of heartbeats present in ECG signals. A unique collection of five different PhysioNet databases with ECG recordings of five different classes is created to enhance the dataset. These databases are segmented into ECG Fragments (long-term ECG signals of length 10-s) to effectively capture the ECG features between successive beats. These ECG fragments are then concatenated to form a merged dataset. Initially, sampling of the merged dataset is done. For balancing the dataset, Synthetic Minority Oversampling Technique (SMOTE) is used. Afterwards, 1D-CNN is employed with different sets of hyperparameters for the efficient classification of the ECG dataset. Classification of ECG of five different classes is also done through two deep Convolutional Neural Networks (CNNs), namely GoogLeNet and SqueezeNet, and Support Vector Machines (SVM). The statistical results obtained proved the dominance of EffNet over the transfer learning techniques (SqueezeNet and GoogLeNet) and SVM. Furthermore, a comparison is also made with the existing literature work carried out for ECG classification and the statistical results dominated over all others in terms of performance metrics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英勇的红酒完成签到 ,获得积分10
1秒前
1秒前
炙热尔烟完成签到,获得积分10
3秒前
哇哒西蛙完成签到,获得积分20
3秒前
尚秋月完成签到,获得积分10
3秒前
5秒前
5秒前
顺心的芝麻完成签到 ,获得积分10
6秒前
Dharma_Bums发布了新的文献求助10
7秒前
科研通AI2S应助ironsilica采纳,获得10
8秒前
8秒前
SSY完成签到,获得积分10
9秒前
LongHua发布了新的文献求助10
13秒前
缪道之完成签到 ,获得积分10
13秒前
14秒前
木偶完成签到,获得积分10
14秒前
小猫完成签到 ,获得积分10
14秒前
huayi完成签到,获得积分10
16秒前
典雅胜发布了新的文献求助10
17秒前
姚怜南完成签到,获得积分10
17秒前
Norah完成签到,获得积分10
18秒前
18秒前
饱满的毛巾完成签到,获得积分10
19秒前
玖月完成签到 ,获得积分0
20秒前
20秒前
21秒前
潇潇完成签到,获得积分10
22秒前
pluto完成签到,获得积分0
22秒前
24秒前
支雨泽发布了新的文献求助10
25秒前
烟花应助TulIP采纳,获得10
26秒前
辛勤的小熊猫完成签到,获得积分10
26秒前
粥粥粥完成签到,获得积分20
27秒前
queer完成签到,获得积分10
27秒前
天行马完成签到,获得积分10
27秒前
juphen2发布了新的文献求助10
28秒前
芜湖起飞完成签到 ,获得积分10
29秒前
wang完成签到,获得积分10
30秒前
30秒前
zhangj696完成签到,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603579
求助须知:如何正确求助?哪些是违规求助? 4688574
关于积分的说明 14854759
捐赠科研通 4693983
什么是DOI,文献DOI怎么找? 2540888
邀请新用户注册赠送积分活动 1507108
关于科研通互助平台的介绍 1471806