EffNet: An efficient One-Dimensional Convolutional Neural Networks for efficient classification of long-term ECG fragments

人工智能 计算机科学 卷积神经网络 模式识别(心理学) 支持向量机 学习迁移 过采样 深度学习 超参数 人工神经网络 机器学习 计算机网络 带宽(计算)
作者
Bilal Ashraf,Husan Ali,Muhammad Aseer Khan,Fahad R. Albogamy
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
标识
DOI:10.1088/2057-1976/adb58a
摘要

Abstract Early Diagnosis of Cardiovascular disease (CVD) is essential to prevent a person from death in case of a cardiac arrhythmia. Automated ECG classification is required because manual classification by cardiologists is laborious, time-consuming, and prone to errors. Efficient ECG classification has been an active research problem over the past few decades. Earlier ECG classification techniques didn’t perform satisfactorily with greater accuracy and efficiency. An efficient 12-layer deep One-Dimensional Convolutional Neural Network (1D-CNN) titled EffNet is proposed in this research paper to automatically classify five distinct categories of heartbeats present in ECG signals. A unique collection of five different PhysioNet databases with ECG recordings of five different classes is created to enhance the dataset. These databases are segmented into ECG Fragments (long-term ECG signals of length 10-s) to effectively capture the ECG features between successive beats. These ECG fragments are then concatenated to form a merged dataset. Initially, sampling of the merged dataset is done. For balancing the dataset, Synthetic Minority Oversampling Technique (SMOTE) is used. Afterwards, 1D-CNN is employed with different sets of hyperparameters for the efficient classification of the ECG dataset. Classification of ECG of five different classes is also done through two deep Convolutional Neural Networks (CNNs), namely GoogLeNet and SqueezeNet, and Support Vector Machines (SVM). The statistical results obtained proved the dominance of EffNet over the transfer learning techniques (SqueezeNet and GoogLeNet) and SVM. Furthermore, a comparison is also made with the existing literature work carried out for ECG classification and the statistical results dominated over all others in terms of performance metrics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助别绪叁仟采纳,获得10
刚刚
共享精神应助漂亮迎梅采纳,获得10
刚刚
Hello应助留胡子的白猫采纳,获得10
1秒前
悦耳听芹完成签到,获得积分10
1秒前
two完成签到,获得积分10
1秒前
愉快南琴完成签到,获得积分10
2秒前
京京发布了新的文献求助20
2秒前
田博妍发布了新的文献求助10
2秒前
wyx发布了新的文献求助10
3秒前
3秒前
BP完成签到,获得积分10
3秒前
3秒前
小丸子呀发布了新的文献求助10
3秒前
zhonglv7应助wzx采纳,获得10
4秒前
4秒前
无私真完成签到,获得积分10
4秒前
给你发布了新的文献求助10
5秒前
下载文章即可完成签到,获得积分10
5秒前
羲和完成签到,获得积分10
6秒前
难过峻熙完成签到,获得积分10
6秒前
留胡子的白猫完成签到,获得积分10
6秒前
能干的荧完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
7秒前
8秒前
QP发布了新的文献求助10
8秒前
8秒前
可爱的采波关注了科研通微信公众号
9秒前
香蕉觅云应助健忘的白秋采纳,获得10
9秒前
天天快乐应助wogua采纳,获得10
10秒前
领导范儿应助哈哈哈哈采纳,获得50
11秒前
11秒前
WTL发布了新的文献求助10
11秒前
wxbroute完成签到,获得积分10
11秒前
yucy103关注了科研通微信公众号
12秒前
上官若男应助nihao采纳,获得10
12秒前
忧伤的坤完成签到 ,获得积分10
12秒前
12秒前
tyx完成签到,获得积分20
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625062
求助须知:如何正确求助?哪些是违规求助? 4710920
关于积分的说明 14953055
捐赠科研通 4778964
什么是DOI,文献DOI怎么找? 2553547
邀请新用户注册赠送积分活动 1515490
关于科研通互助平台的介绍 1475770