EffNet: An efficient One-Dimensional Convolutional Neural Networks for efficient classification of long-term ECG fragments

人工智能 计算机科学 卷积神经网络 模式识别(心理学) 支持向量机 学习迁移 过采样 深度学习 超参数 人工神经网络 机器学习 计算机网络 带宽(计算)
作者
Bilal Ashraf,Husan Ali,Muhammad Aseer Khan,Fahad R. Albogamy
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
标识
DOI:10.1088/2057-1976/adb58a
摘要

Abstract Early Diagnosis of Cardiovascular disease (CVD) is essential to prevent a person from death in case of a cardiac arrhythmia. Automated ECG classification is required because manual classification by cardiologists is laborious, time-consuming, and prone to errors. Efficient ECG classification has been an active research problem over the past few decades. Earlier ECG classification techniques didn’t perform satisfactorily with greater accuracy and efficiency. An efficient 12-layer deep One-Dimensional Convolutional Neural Network (1D-CNN) titled EffNet is proposed in this research paper to automatically classify five distinct categories of heartbeats present in ECG signals. A unique collection of five different PhysioNet databases with ECG recordings of five different classes is created to enhance the dataset. These databases are segmented into ECG Fragments (long-term ECG signals of length 10-s) to effectively capture the ECG features between successive beats. These ECG fragments are then concatenated to form a merged dataset. Initially, sampling of the merged dataset is done. For balancing the dataset, Synthetic Minority Oversampling Technique (SMOTE) is used. Afterwards, 1D-CNN is employed with different sets of hyperparameters for the efficient classification of the ECG dataset. Classification of ECG of five different classes is also done through two deep Convolutional Neural Networks (CNNs), namely GoogLeNet and SqueezeNet, and Support Vector Machines (SVM). The statistical results obtained proved the dominance of EffNet over the transfer learning techniques (SqueezeNet and GoogLeNet) and SVM. Furthermore, a comparison is also made with the existing literature work carried out for ECG classification and the statistical results dominated over all others in terms of performance metrics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aa发布了新的文献求助10
刚刚
善学以致用应助雨竹采纳,获得10
1秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
cdh完成签到,获得积分10
4秒前
醉意拥桃枝完成签到 ,获得积分10
4秒前
风笛完成签到,获得积分10
6秒前
7秒前
朴实海亦完成签到,获得积分10
8秒前
DduYy完成签到,获得积分10
10秒前
iris2333发布了新的文献求助10
13秒前
13秒前
Mic应助斯文的海安采纳,获得10
13秒前
15秒前
地学韦丰吉司长完成签到,获得积分10
16秒前
xz完成签到 ,获得积分10
18秒前
echo完成签到 ,获得积分10
19秒前
betyby完成签到 ,获得积分10
19秒前
20秒前
20秒前
24秒前
25秒前
往往超可爱完成签到 ,获得积分10
25秒前
katzichigio应助薪尘采纳,获得10
25秒前
追光者发布了新的文献求助10
26秒前
18岁中二少年完成签到,获得积分10
26秒前
26秒前
虚心虾米发布了新的文献求助10
26秒前
YYY发布了新的文献求助10
28秒前
28秒前
愉快的熊猫完成签到,获得积分10
29秒前
mmichaell完成签到,获得积分10
30秒前
雨竹发布了新的文献求助10
33秒前
小黑之家完成签到,获得积分10
34秒前
弎夜完成签到,获得积分10
35秒前
35秒前
33应助季思锐采纳,获得10
36秒前
Hanoi347应助季思锐采纳,获得10
36秒前
37秒前
freyaaaaa应助zzymarvel采纳,获得30
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5539951
求助须知:如何正确求助?哪些是违规求助? 4626664
关于积分的说明 14600296
捐赠科研通 4567592
什么是DOI,文献DOI怎么找? 2504101
邀请新用户注册赠送积分活动 1481828
关于科研通互助平台的介绍 1453419