已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

EffNet: An efficient One-Dimensional Convolutional Neural Networks for efficient classification of long-term ECG fragments

人工智能 计算机科学 卷积神经网络 模式识别(心理学) 支持向量机 学习迁移 过采样 深度学习 超参数 人工神经网络 机器学习 计算机网络 带宽(计算)
作者
Bilal Ashraf,Husan Ali,Muhammad Aseer Khan,Fahad R. Albogamy
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
标识
DOI:10.1088/2057-1976/adb58a
摘要

Abstract Early Diagnosis of Cardiovascular disease (CVD) is essential to prevent a person from death in case of a cardiac arrhythmia. Automated ECG classification is required because manual classification by cardiologists is laborious, time-consuming, and prone to errors. Efficient ECG classification has been an active research problem over the past few decades. Earlier ECG classification techniques didn’t perform satisfactorily with greater accuracy and efficiency. An efficient 12-layer deep One-Dimensional Convolutional Neural Network (1D-CNN) titled EffNet is proposed in this research paper to automatically classify five distinct categories of heartbeats present in ECG signals. A unique collection of five different PhysioNet databases with ECG recordings of five different classes is created to enhance the dataset. These databases are segmented into ECG Fragments (long-term ECG signals of length 10-s) to effectively capture the ECG features between successive beats. These ECG fragments are then concatenated to form a merged dataset. Initially, sampling of the merged dataset is done. For balancing the dataset, Synthetic Minority Oversampling Technique (SMOTE) is used. Afterwards, 1D-CNN is employed with different sets of hyperparameters for the efficient classification of the ECG dataset. Classification of ECG of five different classes is also done through two deep Convolutional Neural Networks (CNNs), namely GoogLeNet and SqueezeNet, and Support Vector Machines (SVM). The statistical results obtained proved the dominance of EffNet over the transfer learning techniques (SqueezeNet and GoogLeNet) and SVM. Furthermore, a comparison is also made with the existing literature work carried out for ECG classification and the statistical results dominated over all others in terms of performance metrics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Suliove完成签到,获得积分10
2秒前
5秒前
AIA7完成签到,获得积分10
8秒前
JamesPei应助三点水采纳,获得10
8秒前
科研通AI5应助jiangci采纳,获得30
8秒前
科研小崽发布了新的文献求助10
9秒前
10秒前
汉堡包应助999采纳,获得10
10秒前
have勇气完成签到 ,获得积分10
11秒前
怕黑小白菜完成签到,获得积分10
11秒前
13秒前
小柒发布了新的文献求助10
13秒前
安然发布了新的文献求助10
14秒前
14秒前
15秒前
15秒前
科研发布了新的文献求助10
16秒前
samar发布了新的文献求助10
17秒前
NexusExplorer应助个性的以菱采纳,获得10
18秒前
19秒前
999发布了新的文献求助10
20秒前
20秒前
三点水发布了新的文献求助10
21秒前
可爱的函函应助科研采纳,获得10
21秒前
幽默的友容完成签到,获得积分10
22秒前
hans2400完成签到,获得积分10
22秒前
鲜艳的访风完成签到,获得积分10
24秒前
斯文败类应助samar采纳,获得10
24秒前
Owen应助chyr采纳,获得10
25秒前
25秒前
Dsunflower完成签到 ,获得积分10
26秒前
27秒前
28秒前
安然发布了新的文献求助10
28秒前
29秒前
Hu完成签到 ,获得积分10
29秒前
29秒前
傲娇千亦完成签到 ,获得积分10
29秒前
believer一完成签到,获得积分20
30秒前
西西完成签到,获得积分10
31秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3484176
求助须知:如何正确求助?哪些是违规求助? 3073236
关于积分的说明 9130199
捐赠科研通 2764925
什么是DOI,文献DOI怎么找? 1517450
邀请新用户注册赠送积分活动 702131
科研通“疑难数据库(出版商)”最低求助积分说明 701095