已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

EffNet: An efficient One-Dimensional Convolutional Neural Networks for efficient classification of long-term ECG fragments

人工智能 计算机科学 卷积神经网络 模式识别(心理学) 支持向量机 学习迁移 过采样 深度学习 超参数 人工神经网络 机器学习 计算机网络 带宽(计算)
作者
Bilal Ashraf,Husan Ali,Muhammad Aseer Khan,Fahad R. Albogamy
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
标识
DOI:10.1088/2057-1976/adb58a
摘要

Abstract Early Diagnosis of Cardiovascular disease (CVD) is essential to prevent a person from death in case of a cardiac arrhythmia. Automated ECG classification is required because manual classification by cardiologists is laborious, time-consuming, and prone to errors. Efficient ECG classification has been an active research problem over the past few decades. Earlier ECG classification techniques didn’t perform satisfactorily with greater accuracy and efficiency. An efficient 12-layer deep One-Dimensional Convolutional Neural Network (1D-CNN) titled EffNet is proposed in this research paper to automatically classify five distinct categories of heartbeats present in ECG signals. A unique collection of five different PhysioNet databases with ECG recordings of five different classes is created to enhance the dataset. These databases are segmented into ECG Fragments (long-term ECG signals of length 10-s) to effectively capture the ECG features between successive beats. These ECG fragments are then concatenated to form a merged dataset. Initially, sampling of the merged dataset is done. For balancing the dataset, Synthetic Minority Oversampling Technique (SMOTE) is used. Afterwards, 1D-CNN is employed with different sets of hyperparameters for the efficient classification of the ECG dataset. Classification of ECG of five different classes is also done through two deep Convolutional Neural Networks (CNNs), namely GoogLeNet and SqueezeNet, and Support Vector Machines (SVM). The statistical results obtained proved the dominance of EffNet over the transfer learning techniques (SqueezeNet and GoogLeNet) and SVM. Furthermore, a comparison is also made with the existing literature work carried out for ECG classification and the statistical results dominated over all others in terms of performance metrics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
泥巴完成签到,获得积分10
刚刚
隐形曼青应助德胜岩山神采纳,获得10
刚刚
2秒前
量子星尘发布了新的文献求助10
4秒前
6秒前
帅气善斓应助Jsl采纳,获得10
6秒前
8秒前
dzll发布了新的文献求助10
9秒前
滴嘟滴嘟完成签到 ,获得积分10
12秒前
14秒前
dzll完成签到,获得积分10
14秒前
YUE发布了新的文献求助10
14秒前
bc应助科研通管家采纳,获得30
15秒前
15秒前
Orange应助科研通管家采纳,获得10
15秒前
15秒前
小二郎应助科研通管家采纳,获得10
15秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
CipherSage应助科研通管家采纳,获得10
15秒前
星辰大海应助科研通管家采纳,获得10
15秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
研友_8K2QJZ完成签到,获得积分10
15秒前
繁华若梦完成签到 ,获得积分10
15秒前
16秒前
16秒前
木棉完成签到,获得积分10
16秒前
隐形曼青应助现代的手套采纳,获得80
17秒前
Arslan完成签到,获得积分20
17秒前
田様应助靖旎采纳,获得10
17秒前
清爽的梦秋完成签到 ,获得积分10
17秒前
旭旭汉堡包完成签到,获得积分10
19秒前
CNS冲完成签到,获得积分10
19秒前
19秒前
22秒前
22秒前
cai发布了新的文献求助10
22秒前
23秒前
ff发布了新的文献求助10
24秒前
小萌兽完成签到 ,获得积分10
25秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 25000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5705551
求助须知:如何正确求助?哪些是违规求助? 5164845
关于积分的说明 15245734
捐赠科研通 4859361
什么是DOI,文献DOI怎么找? 2607785
邀请新用户注册赠送积分活动 1558875
关于科研通互助平台的介绍 1516424