EffNet: An efficient One-Dimensional Convolutional Neural Networks for efficient classification of long-term ECG fragments

人工智能 计算机科学 卷积神经网络 模式识别(心理学) 支持向量机 学习迁移 过采样 深度学习 超参数 人工神经网络 机器学习 计算机网络 带宽(计算)
作者
Bilal Ashraf,Husan Ali,Muhammad Aseer Khan,Fahad R. Albogamy
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
标识
DOI:10.1088/2057-1976/adb58a
摘要

Abstract Early Diagnosis of Cardiovascular disease (CVD) is essential to prevent a person from death in case of a cardiac arrhythmia. Automated ECG classification is required because manual classification by cardiologists is laborious, time-consuming, and prone to errors. Efficient ECG classification has been an active research problem over the past few decades. Earlier ECG classification techniques didn’t perform satisfactorily with greater accuracy and efficiency. An efficient 12-layer deep One-Dimensional Convolutional Neural Network (1D-CNN) titled EffNet is proposed in this research paper to automatically classify five distinct categories of heartbeats present in ECG signals. A unique collection of five different PhysioNet databases with ECG recordings of five different classes is created to enhance the dataset. These databases are segmented into ECG Fragments (long-term ECG signals of length 10-s) to effectively capture the ECG features between successive beats. These ECG fragments are then concatenated to form a merged dataset. Initially, sampling of the merged dataset is done. For balancing the dataset, Synthetic Minority Oversampling Technique (SMOTE) is used. Afterwards, 1D-CNN is employed with different sets of hyperparameters for the efficient classification of the ECG dataset. Classification of ECG of five different classes is also done through two deep Convolutional Neural Networks (CNNs), namely GoogLeNet and SqueezeNet, and Support Vector Machines (SVM). The statistical results obtained proved the dominance of EffNet over the transfer learning techniques (SqueezeNet and GoogLeNet) and SVM. Furthermore, a comparison is also made with the existing literature work carried out for ECG classification and the statistical results dominated over all others in terms of performance metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
懦弱的咖啡豆完成签到,获得积分10
刚刚
WLWLW驳回了桐桐应助
1秒前
4秒前
6秒前
宁静致远完成签到,获得积分10
8秒前
11秒前
乐乐应助熙原采纳,获得10
12秒前
研友_VZG7GZ应助123采纳,获得10
12秒前
14秒前
16秒前
wzx发布了新的文献求助20
19秒前
19秒前
20秒前
21秒前
21秒前
22秒前
23秒前
小蘑菇应助烤蹄子采纳,获得10
24秒前
量子星尘发布了新的文献求助10
25秒前
英勇的沛春完成签到 ,获得积分10
27秒前
27秒前
123发布了新的文献求助10
27秒前
魔丸学医完成签到,获得积分10
27秒前
nc发布了新的文献求助10
29秒前
领导范儿应助HJJHJH采纳,获得10
30秒前
冷酷听枫发布了新的文献求助10
32秒前
东方欲晓完成签到,获得积分10
33秒前
飞飞完成签到,获得积分10
35秒前
跪求科研顺利完成签到 ,获得积分10
36秒前
大椒完成签到 ,获得积分10
36秒前
复杂的方盒完成签到 ,获得积分10
37秒前
dada完成签到,获得积分10
37秒前
俭朴依白完成签到,获得积分10
39秒前
科研通AI6应助科研通管家采纳,获得10
39秒前
NiL应助科研通管家采纳,获得10
39秒前
39秒前
小马甲应助科研通管家采纳,获得10
39秒前
bkagyin应助科研通管家采纳,获得10
39秒前
NiL应助科研通管家采纳,获得10
39秒前
小二郎应助科研通管家采纳,获得10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425233
求助须知:如何正确求助?哪些是违规求助? 4539321
关于积分的说明 14166837
捐赠科研通 4456547
什么是DOI,文献DOI怎么找? 2444245
邀请新用户注册赠送积分活动 1435246
关于科研通互助平台的介绍 1412581