EffNet: An efficient One-Dimensional Convolutional Neural Networks for efficient classification of long-term ECG fragments

人工智能 计算机科学 卷积神经网络 模式识别(心理学) 支持向量机 学习迁移 过采样 深度学习 超参数 人工神经网络 机器学习 计算机网络 带宽(计算)
作者
Bilal Ashraf,Husan Ali,Muhammad Aseer Khan,Fahad R. Albogamy
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
标识
DOI:10.1088/2057-1976/adb58a
摘要

Abstract Early Diagnosis of Cardiovascular disease (CVD) is essential to prevent a person from death in case of a cardiac arrhythmia. Automated ECG classification is required because manual classification by cardiologists is laborious, time-consuming, and prone to errors. Efficient ECG classification has been an active research problem over the past few decades. Earlier ECG classification techniques didn’t perform satisfactorily with greater accuracy and efficiency. An efficient 12-layer deep One-Dimensional Convolutional Neural Network (1D-CNN) titled EffNet is proposed in this research paper to automatically classify five distinct categories of heartbeats present in ECG signals. A unique collection of five different PhysioNet databases with ECG recordings of five different classes is created to enhance the dataset. These databases are segmented into ECG Fragments (long-term ECG signals of length 10-s) to effectively capture the ECG features between successive beats. These ECG fragments are then concatenated to form a merged dataset. Initially, sampling of the merged dataset is done. For balancing the dataset, Synthetic Minority Oversampling Technique (SMOTE) is used. Afterwards, 1D-CNN is employed with different sets of hyperparameters for the efficient classification of the ECG dataset. Classification of ECG of five different classes is also done through two deep Convolutional Neural Networks (CNNs), namely GoogLeNet and SqueezeNet, and Support Vector Machines (SVM). The statistical results obtained proved the dominance of EffNet over the transfer learning techniques (SqueezeNet and GoogLeNet) and SVM. Furthermore, a comparison is also made with the existing literature work carried out for ECG classification and the statistical results dominated over all others in terms of performance metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乌鱼子完成签到 ,获得积分10
刚刚
bubble完成签到,获得积分10
2秒前
Akim应助Denmark采纳,获得20
2秒前
JamesPei应助陈勇杰采纳,获得10
5秒前
柔弱谷云发布了新的文献求助10
5秒前
LucyMartinez发布了新的文献求助10
6秒前
董春伟应助孔明采纳,获得10
8秒前
8秒前
不亦乐乎发布了新的文献求助10
8秒前
8秒前
9秒前
哈哈哈完成签到 ,获得积分10
10秒前
tq完成签到,获得积分10
11秒前
12秒前
12秒前
Denmark发布了新的文献求助20
13秒前
愉快的哈密瓜完成签到,获得积分10
14秒前
15秒前
归尘发布了新的文献求助10
19秒前
不是大闸谢完成签到,获得积分20
19秒前
irvinzp完成签到,获得积分10
20秒前
量子星尘发布了新的文献求助10
20秒前
Sicecream完成签到,获得积分10
21秒前
哈哈完成签到 ,获得积分10
21秒前
尔尔发布了新的文献求助10
22秒前
桃酥完成签到,获得积分10
23秒前
23秒前
大佛完成签到,获得积分10
23秒前
24秒前
bkagyin应助weqewqweqw采纳,获得10
26秒前
迷路的曼凡完成签到,获得积分10
27秒前
manggogo完成签到,获得积分10
27秒前
28秒前
活泼的飞鸟完成签到,获得积分10
36秒前
37秒前
37秒前
英姑应助不是大闸谢采纳,获得10
37秒前
xue完成签到 ,获得积分10
39秒前
今后应助奋斗绝施采纳,获得10
39秒前
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Food Microbiology - An Introduction (5th Edition) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4883441
求助须知:如何正确求助?哪些是违规求助? 4168954
关于积分的说明 12935592
捐赠科研通 3929273
什么是DOI,文献DOI怎么找? 2156010
邀请新用户注册赠送积分活动 1174404
关于科研通互助平台的介绍 1079144