Development of an offshore ground motion prediction equation for peak ground acceleration considering path effects based on S-net data

网(多面体) 加速度 海底管道 地质学 大地测量学 路径(计算) 运动(物理) 地震动 海洋工程 物理 计算机科学 数学 几何学 地震学 工程类 岩土工程 经典力学 程序设计语言
作者
Ryo Nakanishi,Shunsuke Takemura
出处
期刊:Earth, Planets and Space [Springer Nature]
卷期号:76 (1)
标识
DOI:10.1186/s40623-024-02078-5
摘要

Abstract Ground motion prediction equations (GMPEs) in offshore regions are important not only for earthquake early warning systems and strong motion prediction but also for evaluating the durability of subsea structures and tsunami risks associated with seafloor slope failures. Since soil conditions and propagation paths differ between onshore and offshore areas, it is desirable to develop a GMPE specific to the seafloor. Previous GMPE models have some problems, such as being influenced by buried observation equipment and path effects. In this study, to predict the distribution of seafloor seismic acceleration, we developed a new GMPE regressed on the peak ground acceleration (PGA) data of S-net using minimum necessary seismic parameters as explanatory variables. Residual analysis using the conventional GMPE emphasized the path effects through the offshore area, which were corrected by the depth up to the plate boundary. The new model successfully predicted PGA with smaller errors compared to conventional onshore and offshore GMPEs. The residuals between the observed and predicted PGAs were used to examine the factors responsible for the effects of the S-net site conditions. The new GMPE can predict PGAs within 300 km of the epicenter from the moment magnitude (Mw 5.4–7.4), focal depth, earthquake type, and source distance. In this model, the distance attenuation coefficient is smaller than in conventional models, and consequently, the PGAs along the trench axis that are amplified due to path effects can be reproduced. This means that PGAs will be unexpectedly larger than those estimated by conventional GMPEs even far from the hypocenter. Our model improves the accuracy of PGA prediction and avoids underestimation in assessing seafloor slope failure and earthquake resistance near the trench. Graphical abstract
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
周老八发布了新的文献求助10
刚刚
lmog发布了新的文献求助10
1秒前
闷声发完成签到,获得积分10
1秒前
芝芝完成签到,获得积分10
1秒前
小云杉应助Cc采纳,获得10
2秒前
Jerry发布了新的文献求助20
2秒前
领导范儿应助XieQinxie采纳,获得10
2秒前
乐乐应助汤圆采纳,获得10
2秒前
wualexandra完成签到,获得积分10
3秒前
钙离子完成签到,获得积分10
3秒前
呆萌黑猫完成签到,获得积分10
3秒前
way完成签到,获得积分10
4秒前
18746005898完成签到 ,获得积分10
4秒前
肉肉完成签到,获得积分10
4秒前
苯妥英俊完成签到,获得积分10
4秒前
仁和完成签到 ,获得积分10
5秒前
一见你就笑完成签到,获得积分10
5秒前
马仔酷酷地完成签到,获得积分10
6秒前
我是老大应助周老八采纳,获得10
6秒前
6秒前
7秒前
Jerry完成签到,获得积分10
8秒前
愉快绿蓉完成签到,获得积分10
9秒前
leileiD完成签到,获得积分10
9秒前
小二郎应助小赞采纳,获得10
10秒前
wanci应助咕噜咕噜采纳,获得20
10秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
满座完成签到,获得积分10
11秒前
111完成签到,获得积分10
11秒前
meme完成签到,获得积分10
11秒前
tian发布了新的文献求助10
11秒前
肖小张完成签到,获得积分10
13秒前
刻苦千琴完成签到,获得积分10
13秒前
厄页石页完成签到,获得积分10
13秒前
自信疾完成签到,获得积分10
13秒前
小洁完成签到 ,获得积分10
13秒前
14秒前
15秒前
Ma_Cong完成签到,获得积分10
15秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009044
求助须知:如何正确求助?哪些是违规求助? 3548827
关于积分的说明 11300025
捐赠科研通 3283345
什么是DOI,文献DOI怎么找? 1810345
邀请新用户注册赠送积分活动 886115
科研通“疑难数据库(出版商)”最低求助积分说明 811259