Development of an offshore ground motion prediction equation for peak ground acceleration considering path effects based on S-net data

网(多面体) 加速度 海底管道 地质学 大地测量学 路径(计算) 运动(物理) 地震动 海洋工程 物理 计算机科学 数学 几何学 地震学 工程类 岩土工程 经典力学 程序设计语言
作者
Ryo Nakanishi,Shunsuke Takemura
出处
期刊:Earth, Planets and Space [Springer Nature]
卷期号:76 (1)
标识
DOI:10.1186/s40623-024-02078-5
摘要

Abstract Ground motion prediction equations (GMPEs) in offshore regions are important not only for earthquake early warning systems and strong motion prediction but also for evaluating the durability of subsea structures and tsunami risks associated with seafloor slope failures. Since soil conditions and propagation paths differ between onshore and offshore areas, it is desirable to develop a GMPE specific to the seafloor. Previous GMPE models have some problems, such as being influenced by buried observation equipment and path effects. In this study, to predict the distribution of seafloor seismic acceleration, we developed a new GMPE regressed on the peak ground acceleration (PGA) data of S-net using minimum necessary seismic parameters as explanatory variables. Residual analysis using the conventional GMPE emphasized the path effects through the offshore area, which were corrected by the depth up to the plate boundary. The new model successfully predicted PGA with smaller errors compared to conventional onshore and offshore GMPEs. The residuals between the observed and predicted PGAs were used to examine the factors responsible for the effects of the S-net site conditions. The new GMPE can predict PGAs within 300 km of the epicenter from the moment magnitude (Mw 5.4–7.4), focal depth, earthquake type, and source distance. In this model, the distance attenuation coefficient is smaller than in conventional models, and consequently, the PGAs along the trench axis that are amplified due to path effects can be reproduced. This means that PGAs will be unexpectedly larger than those estimated by conventional GMPEs even far from the hypocenter. Our model improves the accuracy of PGA prediction and avoids underestimation in assessing seafloor slope failure and earthquake resistance near the trench. Graphical abstract
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助GOODYUE采纳,获得10
1秒前
威武荆完成签到,获得积分10
1秒前
滴答滴发布了新的文献求助10
1秒前
晨曦完成签到,获得积分10
1秒前
xiaoxiao1992完成签到,获得积分10
2秒前
Lucky应助yy采纳,获得10
2秒前
xxy991007完成签到,获得积分10
2秒前
2秒前
明亮翠桃发布了新的文献求助10
3秒前
3秒前
3秒前
我wo完成签到 ,获得积分10
4秒前
Impurity完成签到,获得积分10
4秒前
张豪杰发布了新的文献求助10
5秒前
搜集达人应助金晶采纳,获得10
6秒前
XudongHou完成签到,获得积分10
6秒前
6秒前
zj发布了新的文献求助10
6秒前
6秒前
科研通AI2S应助Morri采纳,获得10
6秒前
7秒前
linovn完成签到,获得积分10
8秒前
8秒前
打打应助ocean采纳,获得10
8秒前
8秒前
8秒前
熊熊爱完成签到,获得积分10
8秒前
龙俊利完成签到,获得积分20
9秒前
明亮翠桃完成签到,获得积分20
9秒前
爱喝奶茶发布了新的文献求助10
9秒前
10秒前
安详以晴完成签到,获得积分20
10秒前
威武荆发布了新的文献求助10
11秒前
wuzhizhongbin完成签到,获得积分10
11秒前
英俊的铭应助皮卡多采纳,获得10
11秒前
冷傲初夏完成签到,获得积分10
12秒前
12秒前
WQ发布了新的文献求助20
12秒前
故意的可冥完成签到,获得积分10
13秒前
Migue应助勤奋雨采纳,获得10
13秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159473
求助须知:如何正确求助?哪些是违规求助? 2810505
关于积分的说明 7888418
捐赠科研通 2469473
什么是DOI,文献DOI怎么找? 1314873
科研通“疑难数据库(出版商)”最低求助积分说明 630722
版权声明 602012