Development of an offshore ground motion prediction equation for peak ground acceleration considering path effects based on S-net data

网(多面体) 加速度 海底管道 地质学 大地测量学 路径(计算) 运动(物理) 地震动 海洋工程 物理 计算机科学 数学 几何学 地震学 工程类 岩土工程 经典力学 程序设计语言
作者
Ryo Nakanishi,Shunsuke Takemura
出处
期刊:Earth, Planets and Space [Springer Nature]
卷期号:76 (1)
标识
DOI:10.1186/s40623-024-02078-5
摘要

Abstract Ground motion prediction equations (GMPEs) in offshore regions are important not only for earthquake early warning systems and strong motion prediction but also for evaluating the durability of subsea structures and tsunami risks associated with seafloor slope failures. Since soil conditions and propagation paths differ between onshore and offshore areas, it is desirable to develop a GMPE specific to the seafloor. Previous GMPE models have some problems, such as being influenced by buried observation equipment and path effects. In this study, to predict the distribution of seafloor seismic acceleration, we developed a new GMPE regressed on the peak ground acceleration (PGA) data of S-net using minimum necessary seismic parameters as explanatory variables. Residual analysis using the conventional GMPE emphasized the path effects through the offshore area, which were corrected by the depth up to the plate boundary. The new model successfully predicted PGA with smaller errors compared to conventional onshore and offshore GMPEs. The residuals between the observed and predicted PGAs were used to examine the factors responsible for the effects of the S-net site conditions. The new GMPE can predict PGAs within 300 km of the epicenter from the moment magnitude (Mw 5.4–7.4), focal depth, earthquake type, and source distance. In this model, the distance attenuation coefficient is smaller than in conventional models, and consequently, the PGAs along the trench axis that are amplified due to path effects can be reproduced. This means that PGAs will be unexpectedly larger than those estimated by conventional GMPEs even far from the hypocenter. Our model improves the accuracy of PGA prediction and avoids underestimation in assessing seafloor slope failure and earthquake resistance near the trench. Graphical abstract
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
机灵的衬衫完成签到 ,获得积分10
1秒前
Yanan完成签到,获得积分10
2秒前
Akim应助轻松的芷烟采纳,获得10
2秒前
3秒前
3秒前
豪哥大大发布了新的文献求助10
3秒前
zyj完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
temp完成签到 ,获得积分10
4秒前
iko完成签到,获得积分10
4秒前
天天快乐应助科研通管家采纳,获得10
5秒前
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
斯文败类应助科研通管家采纳,获得10
5秒前
科目三应助科研通管家采纳,获得10
5秒前
天天快乐应助科研通管家采纳,获得10
5秒前
Agernon应助科研通管家采纳,获得10
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
SYLH应助科研通管家采纳,获得10
5秒前
gaterina完成签到,获得积分10
5秒前
小迷糊完成签到,获得积分10
5秒前
Agernon应助科研通管家采纳,获得10
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
5秒前
共享精神应助科研通管家采纳,获得10
5秒前
Agernon应助科研通管家采纳,获得10
5秒前
5秒前
桐桐应助科研通管家采纳,获得10
5秒前
重要老五应助科研通管家采纳,获得10
5秒前
充电宝应助科研通管家采纳,获得10
5秒前
慕青应助科研通管家采纳,获得10
6秒前
上官若男应助科研通管家采纳,获得10
6秒前
明明完成签到,获得积分10
6秒前
6秒前
蔺天宇发布了新的文献求助10
7秒前
安诺完成签到,获得积分10
7秒前
。。完成签到,获得积分10
7秒前
栗子完成签到,获得积分10
7秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3661487
求助须知:如何正确求助?哪些是违规求助? 3222499
关于积分的说明 9746283
捐赠科研通 2932184
什么是DOI,文献DOI怎么找? 1605480
邀请新用户注册赠送积分活动 757926
科研通“疑难数据库(出版商)”最低求助积分说明 734579