Point Tree Transformer for Point Cloud Registration

计算机科学 点云 云计算 计算机视觉 人工智能 操作系统
作者
Meiling Wang,Guangyan Chen,Yi Yang,Li Yuan,Yufeng Yue
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tcsvt.2025.3526680
摘要

Point cloud registration is a fundamental task in the fields of computer vision and robotics. Recent advancements in transformer-based methods have demonstrated enhanced performance in this domain. However, the standard attention mechanisms employed in these approaches tend to incorporate numerous points of low relevance, and therefore struggle to focus their attention weights on sparse yet meaningful points. This inefficiency leads to limited local structure modeling capabilities and quadratic computational complexity. To overcome these limitations, we propose the Point Tree Transformer (PTT), a novel transformer-based approach for point cloud registration that efficiently extracts comprehensive local and global features while maintaining linear computational complexity. The PTT constructs hierarchical feature trees from point clouds in a coarse-to-dense manner, and introduces a novel Point Tree Attention (PTA) mechanism. This mechanism adheres to the tree structure to facilitate the progressive convergence of attended regions toward salient points. Specifically, each tree layer selectively identifies a subset of relevant points with the highest attention scores, and subsequent layers focus attention on areas of significant relevance, derived from the child points of the selected point set. The feature extraction process additionally incorporates coarse point features that capture high-level semantic information, thus facilitating local structure modeling and the progressive integration of multiscale information. Consequently, the PTA enables the model to focus on essential local structures and extract intricate local information while maintaining linear computational complexity. Extensive experiments conducted on the 3DMatch, ModelNet40, and KITTI datasets demonstrate that our method outperforms state-of-the-art methods in terms of performance. The code for our method is publicly available at https://github.com/CGuangyan-BIT/PTT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zp完成签到,获得积分10
刚刚
刚刚
搜集达人应助79采纳,获得10
1秒前
ZX801发布了新的文献求助10
2秒前
森林林林完成签到 ,获得积分10
2秒前
李健应助禾禾采纳,获得10
3秒前
自由保温杯完成签到,获得积分10
3秒前
weige发布了新的文献求助10
3秒前
一坨耙耙完成签到,获得积分10
4秒前
多久上课发布了新的文献求助10
4秒前
li发布了新的文献求助10
5秒前
jenningseastera应助liuxl采纳,获得10
6秒前
chosmos发布了新的文献求助10
6秒前
8秒前
小yi又困啦完成签到 ,获得积分10
8秒前
whoknowsname发布了新的文献求助30
8秒前
爆米花应助多久上课采纳,获得10
9秒前
9秒前
10秒前
小马甲应助勤恳曼卉采纳,获得10
11秒前
李爱国应助简简采纳,获得80
12秒前
seven发布了新的文献求助10
13秒前
myf发布了新的文献求助10
14秒前
15秒前
小远发布了新的文献求助10
15秒前
16秒前
LioXH完成签到,获得积分10
17秒前
18秒前
大个应助我不采纳,获得10
19秒前
20秒前
不系之舟完成签到,获得积分10
20秒前
充电宝应助XuWei采纳,获得10
20秒前
20秒前
文献蚂蚁发布了新的文献求助10
21秒前
21秒前
111发布了新的文献求助30
21秒前
22秒前
一二完成签到 ,获得积分10
22秒前
田様应助harrision采纳,获得10
23秒前
aou发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Research Handbook on Law and Political Economy Second Edition 398
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4538095
求助须知:如何正确求助?哪些是违规求助? 3972801
关于积分的说明 12306882
捐赠科研通 3639551
什么是DOI,文献DOI怎么找? 2003944
邀请新用户注册赠送积分活动 1039353
科研通“疑难数据库(出版商)”最低求助积分说明 928718