Point Tree Transformer for Point Cloud Registration

计算机科学 点云 云计算 计算机视觉 人工智能 操作系统
作者
Meiling Wang,Guangyan Chen,Yi Yang,Li Yuan,Yufeng Yue
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tcsvt.2025.3526680
摘要

Point cloud registration is a fundamental task in the fields of computer vision and robotics. Recent advancements in transformer-based methods have demonstrated enhanced performance in this domain. However, the standard attention mechanisms employed in these approaches tend to incorporate numerous points of low relevance, and therefore struggle to focus their attention weights on sparse yet meaningful points. This inefficiency leads to limited local structure modeling capabilities and quadratic computational complexity. To overcome these limitations, we propose the Point Tree Transformer (PTT), a novel transformer-based approach for point cloud registration that efficiently extracts comprehensive local and global features while maintaining linear computational complexity. The PTT constructs hierarchical feature trees from point clouds in a coarse-to-dense manner, and introduces a novel Point Tree Attention (PTA) mechanism. This mechanism adheres to the tree structure to facilitate the progressive convergence of attended regions toward salient points. Specifically, each tree layer selectively identifies a subset of relevant points with the highest attention scores, and subsequent layers focus attention on areas of significant relevance, derived from the child points of the selected point set. The feature extraction process additionally incorporates coarse point features that capture high-level semantic information, thus facilitating local structure modeling and the progressive integration of multiscale information. Consequently, the PTA enables the model to focus on essential local structures and extract intricate local information while maintaining linear computational complexity. Extensive experiments conducted on the 3DMatch, ModelNet40, and KITTI datasets demonstrate that our method outperforms state-of-the-art methods in terms of performance. The code for our method is publicly available at https://github.com/CGuangyan-BIT/PTT.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木春完成签到,获得积分10
1秒前
Choccy关注了科研通微信公众号
2秒前
2秒前
NexusExplorer应助zxn课题组采纳,获得10
2秒前
pxr完成签到,获得积分10
2秒前
桐桐应助浮生之梦采纳,获得10
3秒前
乱世完成签到,获得积分10
4秒前
北北完成签到,获得积分10
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
医隐完成签到,获得积分10
6秒前
酷波er应助李霞采纳,获得10
6秒前
6秒前
与落发布了新的文献求助10
7秒前
朱小燕发布了新的文献求助10
7秒前
slience完成签到,获得积分20
8秒前
英姑应助崔龙锋采纳,获得10
8秒前
8秒前
以露华浓发布了新的文献求助10
9秒前
努力生活的小柴完成签到,获得积分10
9秒前
9秒前
9秒前
泛泛之交完成签到,获得积分10
10秒前
10秒前
12秒前
搜集达人应助五十采纳,获得10
12秒前
可爱雪糕完成签到 ,获得积分10
13秒前
13秒前
木杉发布了新的文献求助10
13秒前
吃鱼的猫完成签到,获得积分10
14秒前
15秒前
Akim应助久念采纳,获得10
15秒前
16秒前
16秒前
LinYX完成签到,获得积分10
17秒前
17秒前
An完成签到,获得积分10
18秒前
19秒前
王王发布了新的文献求助10
19秒前
moon发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736345
求助须知:如何正确求助?哪些是违规求助? 5365448
关于积分的说明 15332933
捐赠科研通 4880224
什么是DOI,文献DOI怎么找? 2622747
邀请新用户注册赠送积分活动 1571635
关于科研通互助平台的介绍 1528489