亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Point Tree Transformer for Point Cloud Registration

计算机科学 点云 云计算 计算机视觉 人工智能 操作系统
作者
Meiling Wang,Guangyan Chen,Yi Yang,Li Yuan,Yufeng Yue
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tcsvt.2025.3526680
摘要

Point cloud registration is a fundamental task in the fields of computer vision and robotics. Recent advancements in transformer-based methods have demonstrated enhanced performance in this domain. However, the standard attention mechanisms employed in these approaches tend to incorporate numerous points of low relevance, and therefore struggle to focus their attention weights on sparse yet meaningful points. This inefficiency leads to limited local structure modeling capabilities and quadratic computational complexity. To overcome these limitations, we propose the Point Tree Transformer (PTT), a novel transformer-based approach for point cloud registration that efficiently extracts comprehensive local and global features while maintaining linear computational complexity. The PTT constructs hierarchical feature trees from point clouds in a coarse-to-dense manner, and introduces a novel Point Tree Attention (PTA) mechanism. This mechanism adheres to the tree structure to facilitate the progressive convergence of attended regions toward salient points. Specifically, each tree layer selectively identifies a subset of relevant points with the highest attention scores, and subsequent layers focus attention on areas of significant relevance, derived from the child points of the selected point set. The feature extraction process additionally incorporates coarse point features that capture high-level semantic information, thus facilitating local structure modeling and the progressive integration of multiscale information. Consequently, the PTA enables the model to focus on essential local structures and extract intricate local information while maintaining linear computational complexity. Extensive experiments conducted on the 3DMatch, ModelNet40, and KITTI datasets demonstrate that our method outperforms state-of-the-art methods in terms of performance. The code for our method is publicly available at https://github.com/CGuangyan-BIT/PTT.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助lxx采纳,获得10
3秒前
9秒前
颢懿完成签到 ,获得积分10
13秒前
一个西藏发布了新的文献求助10
13秒前
14秒前
15秒前
16秒前
奋进的熊完成签到,获得积分10
16秒前
共享精神应助空凌采纳,获得10
17秒前
ding应助karstbing采纳,获得10
18秒前
Felix0929发布了新的文献求助10
20秒前
吃了吃了完成签到,获得积分10
26秒前
Orange应助doctor2023采纳,获得10
27秒前
Akim应助辛勤的映波采纳,获得10
27秒前
Felix0929完成签到,获得积分10
29秒前
lixiangyi1完成签到,获得积分20
33秒前
xiaohardy完成签到,获得积分10
34秒前
小二郎应助科研通管家采纳,获得10
36秒前
搜集达人应助科研通管家采纳,获得10
36秒前
36秒前
lxx完成签到,获得积分20
41秒前
bitman完成签到,获得积分10
42秒前
42秒前
lixiangyi1发布了新的文献求助10
44秒前
明明完成签到,获得积分10
49秒前
51秒前
CipherSage应助alc采纳,获得10
54秒前
ABAB发布了新的文献求助10
55秒前
可爱的函函应助paulin采纳,获得10
1分钟前
Kristopher完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
wearelulu完成签到,获得积分10
1分钟前
alc发布了新的文献求助10
1分钟前
sakiko完成签到,获得积分20
1分钟前
宝剑葫芦完成签到 ,获得积分10
1分钟前
sakiko发布了新的文献求助10
1分钟前
1分钟前
希拉完成签到 ,获得积分10
1分钟前
zzyuyu完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
ACOG Practice Bulletin: Polycystic Ovary Syndrome 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603239
求助须知:如何正确求助?哪些是违规求助? 4688339
关于积分的说明 14853279
捐赠科研通 4688566
什么是DOI,文献DOI怎么找? 2540535
邀请新用户注册赠送积分活动 1506982
关于科研通互助平台的介绍 1471543