Point Tree Transformer for Point Cloud Registration

计算机科学 点云 云计算 计算机视觉 人工智能 操作系统
作者
Meiling Wang,Guangyan Chen,Yi Yang,Li Yuan,Yufeng Yue
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tcsvt.2025.3526680
摘要

Point cloud registration is a fundamental task in the fields of computer vision and robotics. Recent advancements in transformer-based methods have demonstrated enhanced performance in this domain. However, the standard attention mechanisms employed in these approaches tend to incorporate numerous points of low relevance, and therefore struggle to focus their attention weights on sparse yet meaningful points. This inefficiency leads to limited local structure modeling capabilities and quadratic computational complexity. To overcome these limitations, we propose the Point Tree Transformer (PTT), a novel transformer-based approach for point cloud registration that efficiently extracts comprehensive local and global features while maintaining linear computational complexity. The PTT constructs hierarchical feature trees from point clouds in a coarse-to-dense manner, and introduces a novel Point Tree Attention (PTA) mechanism. This mechanism adheres to the tree structure to facilitate the progressive convergence of attended regions toward salient points. Specifically, each tree layer selectively identifies a subset of relevant points with the highest attention scores, and subsequent layers focus attention on areas of significant relevance, derived from the child points of the selected point set. The feature extraction process additionally incorporates coarse point features that capture high-level semantic information, thus facilitating local structure modeling and the progressive integration of multiscale information. Consequently, the PTA enables the model to focus on essential local structures and extract intricate local information while maintaining linear computational complexity. Extensive experiments conducted on the 3DMatch, ModelNet40, and KITTI datasets demonstrate that our method outperforms state-of-the-art methods in terms of performance. The code for our method is publicly available at https://github.com/CGuangyan-BIT/PTT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
好名字完成签到,获得积分20
1秒前
丘比特应助小狗采纳,获得10
2秒前
2秒前
陈文堂完成签到,获得积分10
2秒前
努力独行者完成签到,获得积分20
3秒前
3秒前
3秒前
3秒前
cai发布了新的文献求助10
3秒前
4秒前
不安的蜗牛完成签到,获得积分10
5秒前
5秒前
瞿霞发布了新的文献求助10
5秒前
希望天下0贩的0应助芭乐采纳,获得10
6秒前
核桃发布了新的文献求助10
7秒前
北船余音发布了新的文献求助20
7秒前
8秒前
Ava应助科研通管家采纳,获得10
8秒前
Li应助科研通管家采纳,获得80
8秒前
赘婿应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
9秒前
anasy应助科研通管家采纳,获得20
9秒前
9秒前
打打应助科研通管家采纳,获得10
9秒前
9秒前
浮游应助科研通管家采纳,获得10
9秒前
学术人发布了新的文献求助10
9秒前
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
领导范儿应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
我是老大应助科研通管家采纳,获得10
9秒前
深情安青应助自觉平露采纳,获得30
9秒前
浮游应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
嘻嘻应助科研通管家采纳,获得10
9秒前
在水一方应助科研通管家采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5184408
求助须知:如何正确求助?哪些是违规求助? 4370229
关于积分的说明 13609334
捐赠科研通 4222301
什么是DOI,文献DOI怎么找? 2315790
邀请新用户注册赠送积分活动 1314326
关于科研通互助平台的介绍 1263281