Point Tree Transformer for Point Cloud Registration

计算机科学 点云 云计算 计算机视觉 人工智能 操作系统
作者
Meiling Wang,Guangyan Chen,Yi Yang,Li Yuan,Yufeng Yue
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tcsvt.2025.3526680
摘要

Point cloud registration is a fundamental task in the fields of computer vision and robotics. Recent advancements in transformer-based methods have demonstrated enhanced performance in this domain. However, the standard attention mechanisms employed in these approaches tend to incorporate numerous points of low relevance, and therefore struggle to focus their attention weights on sparse yet meaningful points. This inefficiency leads to limited local structure modeling capabilities and quadratic computational complexity. To overcome these limitations, we propose the Point Tree Transformer (PTT), a novel transformer-based approach for point cloud registration that efficiently extracts comprehensive local and global features while maintaining linear computational complexity. The PTT constructs hierarchical feature trees from point clouds in a coarse-to-dense manner, and introduces a novel Point Tree Attention (PTA) mechanism. This mechanism adheres to the tree structure to facilitate the progressive convergence of attended regions toward salient points. Specifically, each tree layer selectively identifies a subset of relevant points with the highest attention scores, and subsequent layers focus attention on areas of significant relevance, derived from the child points of the selected point set. The feature extraction process additionally incorporates coarse point features that capture high-level semantic information, thus facilitating local structure modeling and the progressive integration of multiscale information. Consequently, the PTA enables the model to focus on essential local structures and extract intricate local information while maintaining linear computational complexity. Extensive experiments conducted on the 3DMatch, ModelNet40, and KITTI datasets demonstrate that our method outperforms state-of-the-art methods in terms of performance. The code for our method is publicly available at https://github.com/CGuangyan-BIT/PTT.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柚子发布了新的文献求助10
1秒前
1秒前
2秒前
科研通AI2S应助明理的之桃采纳,获得10
2秒前
Eden发布了新的文献求助10
2秒前
伊酒应助醒醒采纳,获得10
2秒前
研友_LmYXmL完成签到,获得积分10
3秒前
Moihan完成签到,获得积分10
3秒前
3秒前
3秒前
橘子完成签到,获得积分10
4秒前
正无穷发布了新的文献求助10
4秒前
k sir完成签到,获得积分10
5秒前
左左完成签到,获得积分10
5秒前
6秒前
6秒前
orixero应助任新元采纳,获得10
6秒前
7秒前
CodeCraft应助Hou采纳,获得10
7秒前
7秒前
友好的夏之完成签到,获得积分10
8秒前
8秒前
see发布了新的文献求助10
8秒前
8秒前
gui完成签到,获得积分10
9秒前
9秒前
kgg001完成签到,获得积分10
9秒前
优雅羽毛发布了新的文献求助10
10秒前
10秒前
hsy309完成签到,获得积分10
10秒前
ZY完成签到,获得积分10
10秒前
10秒前
科目三应助柚子采纳,获得10
10秒前
11秒前
11秒前
杨震发布了新的文献求助10
11秒前
11秒前
MDL发布了新的文献求助10
11秒前
12秒前
12秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3474135
求助须知:如何正确求助?哪些是违规求助? 3066512
关于积分的说明 9099287
捐赠科研通 2757760
什么是DOI,文献DOI怎么找? 1513110
邀请新用户注册赠送积分活动 699386
科研通“疑难数据库(出版商)”最低求助积分说明 698921