SOFW: A Synergistic Optimization Framework for Indoor 3D Object Detection

计算机科学 目标检测 人工智能 模式识别(心理学)
作者
Kun Dai,Zhiqiang Jiang,Tao Xie,Ke Wang,Dedong Liu,Zhendong Fan,Ruifeng Li,Lijun Zhao,Mohamed Omar
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tmm.2024.3521782
摘要

In this work, we observe that indoor 3D object detection across varied scene domains encompasses both universal attributes and specific features. Based on this insight, we propose SOFW, a synergistic optimization framework that investigates the feasibility of optimizing 3D object detection tasks concurrently spanning several dataset domains. The core of SOFW is identifying domain-shared parameters to encode universal scene attributes, while employing domain-specific parameters to delve into the particularities of each scene domain. Technically, we introduce a set abstraction alteration strategy (SAAS) that embeds learnable domain-specific features into set abstraction layers, thus empowering the network with a refined comprehension for each scene domain. Besides, we develop an elementwise sharing strategy (ESS) to facilitate fine-grained adaptive discernment between domain-shared and domain-specific parameters for network layers. Benefited from the proposed techniques, SOFW crafts feature representations for each scene domain by learning domain-specific parameters, whilst encoding generic attributes and contextual interdependencies via domain-shared parameters. Built upon the classical detection framework VoteNet without any complicated modules, SOFW delivers impressive performances under multiple benchmarks with much fewer total storage footprint. Additionally, we demonstrate that the proposed ESS is a universal strategy and applying it to a voxels-based approach TR3D can realize cutting-edge detection accuracy on all S3DIS, ScanNet, and SUN RGB-D datasets. The source code is available at https://github.com/mooncake199809/SOFW
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yangou发布了新的文献求助10
刚刚
科研通AI5应助壮观的衫采纳,获得10
1秒前
1秒前
2秒前
蔺子凡发布了新的文献求助10
3秒前
3秒前
4秒前
深情安青应助出门右转采纳,获得10
4秒前
英勇绮南发布了新的文献求助10
7秒前
企鹅发布了新的文献求助10
8秒前
haibing发布了新的文献求助10
8秒前
9秒前
10秒前
11秒前
星川发布了新的文献求助10
11秒前
隐形曼青应助香蕉谷芹采纳,获得10
11秒前
Alexbirchurros完成签到 ,获得积分10
12秒前
深情安青应助科研通管家采纳,获得10
12秒前
bkagyin应助科研通管家采纳,获得10
12秒前
研友_Z30GJ8应助科研通管家采纳,获得10
12秒前
shinysparrow应助科研通管家采纳,获得10
12秒前
甘新儿应助科研通管家采纳,获得10
12秒前
共享精神应助科研通管家采纳,获得10
12秒前
顾矜应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
大模型应助科研通管家采纳,获得10
12秒前
123完成签到,获得积分20
13秒前
13秒前
16秒前
洁净的代荷完成签到,获得积分20
16秒前
壮观的衫发布了新的文献求助10
16秒前
nanling发布了新的文献求助10
16秒前
17秒前
19秒前
长情的千风完成签到,获得积分10
19秒前
19秒前
ruoyi发布了新的文献求助10
20秒前
ann发布了新的文献求助10
23秒前
24秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1250
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
APA educational psychology handbook, Vol 1: Theories, constructs, and critical issues 700
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3651973
求助须知:如何正确求助?哪些是违规求助? 3216162
关于积分的说明 9711019
捐赠科研通 2923965
什么是DOI,文献DOI怎么找? 1601432
邀请新用户注册赠送积分活动 754160
科研通“疑难数据库(出版商)”最低求助积分说明 732987