A novel imbalance fault diagnosis method based on data augmentation and hybrid deep learning models

深度学习 人工智能 计算机科学 断层(地质) 机器学习 地质学 地震学
作者
Caizi Fan,Yongchao Zhang,Hui Ma,Zeyu Ma,Xunmin Yin,Xiaoxu Zhang,Songtao Zhao
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
被引量:4
标识
DOI:10.1177/14759217241291143
摘要

In recent years, although a large number of intelligent fault diagnosis methods have been proposed, their effectiveness has mostly been validated through balanced datasets. However, the data accumulated in real engineering scenarios tend to show a long-tail distribution, with a much larger number of healthy samples compared to faulty samples. This phenomenon makes the classifiers of deep learning models prone to learn features from samples of the majority class, which affects the model’s accuracy in identifying faulty samples. To solve the above imbalanced data problem, a novel hybrid model is proposed. First, to reduce the dimensionality of the dataset, time and frequency domain feature indicators are used instead of the raw vibration signals. Subsequently, the k-nearest neighbor maximum trend diffusion algorithm optimized through grid search is employed to generate high quality fault samples for balancing the dataset. Finally, the temporal correlation features and spatial features of the data are extracted and fused to predict the fault classes by the hybrid deep learning model. The effectiveness of the proposed method is verified on two different gearbox datasets. The experimental results indicate that the proposed model can generate synthetic samples that align with the distribution of real samples. And it also achieves the highest diagnostic accuracy and F1 score under different imbalance ratios, which are superior than other models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ssss完成签到,获得积分10
刚刚
刚刚
顷禾发布了新的文献求助10
刚刚
1秒前
善学以致用应助L112233采纳,获得10
1秒前
1秒前
裴彤发布了新的文献求助10
1秒前
一缕阳光完成签到,获得积分10
1秒前
1秒前
小二郎应助天气晴朗采纳,获得30
2秒前
zyzy1996发布了新的文献求助10
2秒前
2秒前
chase完成签到,获得积分10
2秒前
实验耗材完成签到 ,获得积分10
2秒前
3秒前
3秒前
JYP发布了新的文献求助10
4秒前
慕青应助qqq采纳,获得30
4秒前
sy发布了新的文献求助10
4秒前
科研通AI2S应助感动新烟采纳,获得10
4秒前
wxx336完成签到,获得积分10
4秒前
隐形曼青应助怡然的夏之采纳,获得10
4秒前
科研通AI6应助的的的维尔采纳,获得10
5秒前
5秒前
6秒前
脑洞疼应助水泥酱采纳,获得10
6秒前
6秒前
6秒前
Oops完成签到,获得积分10
6秒前
6秒前
维语发布了新的文献求助10
6秒前
wxy2011完成签到 ,获得积分10
6秒前
韩保晨发布了新的文献求助10
6秒前
悦耳的舞仙完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
奥格诺完成签到,获得积分10
7秒前
明明发布了新的文献求助10
8秒前
宋晓静发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5668030
求助须知:如何正确求助?哪些是违规求助? 4889242
关于积分的说明 15123064
捐赠科研通 4826923
什么是DOI,文献DOI怎么找? 2584432
邀请新用户注册赠送积分活动 1538259
关于科研通互助平台的介绍 1496590