FLANet: A multiscale temporal convolution and spatial-spectral attention network for EEG artifact removal with adversarial training

计算机科学 降噪 人工智能 工件(错误) 噪音(视频) 卷积(计算机科学) 滤波器(信号处理) 模式识别(心理学) 信号处理 人工神经网络 信号(编程语言) 深度学习 机器学习 计算机视觉 图像(数学) 数字信号处理 计算机硬件 程序设计语言
作者
Junkongshuai Wang,Yangjie Luo,Haoran Wang,Lu Wang,Lihua Zhang,Zhongxue Gan,Xiaoyang Kang
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:22 (1): 016021-016021
标识
DOI:10.1088/1741-2552/adae34
摘要

Abstract Objective. Denoising artifacts, such as noise from muscle or cardiac activity, is a crucial and ubiquitous concern in neurophysiological signal processing, particularly for enhancing the signal-to-noise ratio in electroencephalograph (EEG) analysis. Novel methods based on deep learning demonstrate a notably prominent effect compared to traditional denoising approaches. However, those still suffer from certain limitations. Some methods often neglect the multi-domain characteristics of the artifact signal. Even among those that do consider these, there are deficiencies in terms of efficiency, effectiveness and computation cost. Approach. In this study, we propose a multiscale temporal convolution and spatial-spectral attention network with adversarial training for automatically filtering artifacts, named filter artifacts network (FLANet). The multiscale convolution module can extract sufficient temporal information and the spatial-spectral attention network can extract not only non-local similarity but also spectral dependencies. To make data denoising more efficient and accurate, we adopt adversarial training with novel loss functions to generate outputs that are closer to pure signals. Main results. The results show that the method proposed in this paper achieves great performance in artifact removal and valid information preservation on EEG signals contaminated by different types of artifacts. This approach enables a more optimal trade-off between denoising efficacy and computational overhead. Significance. The proposed artifact removal framework facilitates the implementation of an efficient denoising method, contributing to the advancement of neural analysis and neural engineering, and can be expected to be applied to clinical research and to realize novel human-computer interaction systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助咔咔采纳,获得10
2秒前
渊思发布了新的文献求助10
2秒前
2秒前
时谦先生发布了新的文献求助10
3秒前
炸药完成签到 ,获得积分10
4秒前
4秒前
大力世界发布了新的文献求助10
4秒前
科研通AI5应助屈灿采纳,获得10
4秒前
5秒前
5秒前
Jasper应助修慈采纳,获得10
5秒前
最佳发布了新的文献求助10
6秒前
善学以致用应助max采纳,获得10
6秒前
王豪奇完成签到,获得积分20
8秒前
bwm发布了新的文献求助10
8秒前
开心小猪发布了新的文献求助10
9秒前
10秒前
10秒前
里里发布了新的文献求助20
10秒前
冒泡完成签到,获得积分10
10秒前
王豪奇发布了新的文献求助10
10秒前
淡定南松完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
未12完成签到,获得积分10
12秒前
风中的以山完成签到 ,获得积分10
12秒前
JamesPei应助小田心采纳,获得10
13秒前
13秒前
科研通AI2S应助doczeng采纳,获得10
13秒前
小蘑菇应助代小葵采纳,获得10
14秒前
叶落孤城发布了新的文献求助10
15秒前
15秒前
张文发布了新的文献求助10
15秒前
15秒前
感谢rubywoojennie转发科研通微信,获得积分50
16秒前
善学以致用应助静爸采纳,获得10
16秒前
NexusExplorer应助韩涵采纳,获得10
16秒前
小马甲应助时谦先生采纳,获得10
16秒前
英俊的铭应助zqq123采纳,获得10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
Neuromuscular and Electrodiagnostic Medicine Board Review 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3514977
求助须知:如何正确求助?哪些是违规求助? 3097303
关于积分的说明 9235135
捐赠科研通 2792262
什么是DOI,文献DOI怎么找? 1532392
邀请新用户注册赠送积分活动 712025
科研通“疑难数据库(出版商)”最低求助积分说明 707090