R3c to P4bm phase transition assisted small to large polaron crossover in sodium bismuth titanate-based ferroelectrics

极化子 凝聚态物理 材料科学 四方晶系 相(物质) 铁电性 相变 电导率 带隙 电介质 化学 电子 物理 物理化学 量子力学 有机化学 光电子学
作者
Koyal Suman Samantaray,Dilip Sasmal,P. Maneesha,Somaditya Sen
出处
期刊:Journal of Applied Physics [American Institute of Physics]
卷期号:136 (22) 被引量:1
标识
DOI:10.1063/5.0224323
摘要

Sodium bismuth titanate (NBT) reveals a rhombohedral (R3c) phase at room temperature. Ferroelectricity reduces with the advent of a tetragonal (P4bm) phase at the depolarization temperature, Td ∼ 456 K. AC conductivity (σac) studies exposed a small-to-large polaron transition at Td. Barrier energy (WH) was ∼1.60 eV at T < Td for the small polarons in the R3c phase, which drastically reduced to ∼0.043 eV with the advent of the P4bm phase for the large polarons for T > Td. This is associated with the sharp rise in conductivity for T > Td. Ab initio calculations consider the electronic distortion due to oxygen vacancies, which creates trap states in the band structure. The energy gap (ΔE) between the trap states and the conduction band was ∼1.4 eV (R3c) and ∼0.2 eV (P4bm). These values are comparable to the experimental WH. The P4bm phase is more distorted than the R3c phase from charge density and structural distortion calculations. This indicates the formation of large polarons in the P4bm phase, compared to that of small polarons in R3c. The formation energy of the polaron (Epolaron) was calculated from the structural distortion and electron localization energies. The P4bm phase shows lower Epolaron (−0.26 eV) than R3c (−0.36 eV), indicating higher conductivity for the P4bm phase. NBT was chemically modified by adding BCZT to validate the small to large polaronic crossover at Td. This is discussed in light of σac measurements. WH decreased with BCZT incorporation, thereby increasing the conductivity. This is a consequence of the increased lattice distortion due to BCZT incorporation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
2秒前
唐的一笔发布了新的文献求助10
2秒前
研友_VZG7GZ应助佳慧采纳,获得10
2秒前
JUGG发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
4秒前
酷爱小飞发布了新的文献求助10
4秒前
少年游完成签到,获得积分20
6秒前
深情安青应助123采纳,获得10
6秒前
7秒前
苗条的代曼完成签到,获得积分10
7秒前
韶华关注了科研通微信公众号
9秒前
9秒前
9秒前
10秒前
10秒前
10秒前
10秒前
10秒前
山高水长完成签到,获得积分20
11秒前
11秒前
闪电发布了新的文献求助10
11秒前
12秒前
霜幕发布了新的文献求助10
12秒前
积极如雪完成签到,获得积分10
13秒前
14秒前
14秒前
优美紫槐发布了新的文献求助10
14秒前
优雅泡芙完成签到,获得积分10
14秒前
15秒前
学术菜鸟发布了新的文献求助30
16秒前
17秒前
17秒前
17秒前
贺贺发布了新的文献求助10
17秒前
18秒前
19秒前
麻烦~发布了新的文献求助10
20秒前
量子星尘发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711933
求助须知:如何正确求助?哪些是违规求助? 5206722
关于积分的说明 15265734
捐赠科研通 4864032
什么是DOI,文献DOI怎么找? 2611152
邀请新用户注册赠送积分活动 1561416
关于科研通互助平台的介绍 1518736