已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Explainable Deep Learning Approaches for Risk Screening of Periodontitis

牙周炎 医学 全国健康与营养检查调查 疾病 糖尿病 环境卫生 内科学 人口 内分泌学
作者
Bosung Suh,Hee Tae Yu,Jae‐Kwan Cha,Jongeun Choi,Jin‐Woo Kim
出处
期刊:Journal of Dental Research [SAGE Publishing]
被引量:1
标识
DOI:10.1177/00220345241286488
摘要

Several pieces of evidence have been reported regarding the association between periodontitis and systemic diseases. Despite the emphasized significance of prevention and early diagnosis of periodontitis, there is still a lack of a clinical tool for early screening of this condition. Therefore, this study aims to use explainable artificial intelligence (XAI) technology to facilitate early screening of periodontitis. This is achieved by analyzing various clinical features and providing individualized risk assessment using XAI. We used 1,012 variables for a total of 30,465 participants data from National Health and Nutrition Examination Survey (NHANES). After preprocessing, 9,632 and 5,601 participants were left for all age groups and the over 50 y age group, respectively. They were used to train deep learning and machine learning models optimized for opportunistic screening and diagnosis analysis of periodontitis based on Centers for Disease Control and Prevention/ American Academy of Pediatrics case definition. Local interpretable model-agnostic explanations (LIME) were applied to evaluate potential associated factors, including demographic, lifestyle, medical, and biochemical factors. The deep learning models showed area under the curve values of 0.858 ± 0.011 for the opportunistic screening and 0.865 ± 0.008 for the diagnostic dataset, outperforming baselines. By using LIME, we elicited important features and assessed the combined impact and interpretation of each feature on individual risk. Associated factors such as age, sex, diabetes status, tissue transglutaminase, and smoking status have emerged as crucial features that are about twice as important than other features, while arthritis, sleep disorders, high blood pressure, cholesterol levels, and overweight have also been identified as contributing factors to periodontitis. The feature contribution rankings generated with XAI offered insights that align well with clinically recognized associated factors for periodontitis. These results highlight the utility of XAI in deep learning-based associated factor analysis for detecting clinically associated factors and the assistance of XAI in developing early detection and prevention strategies for periodontitis in medical checkups.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ztx完成签到,获得积分10
2秒前
daydayup完成签到 ,获得积分10
2秒前
一直向前发布了新的文献求助10
3秒前
Akim应助Sienna采纳,获得10
3秒前
5秒前
7秒前
淡然绝山完成签到,获得积分10
7秒前
ding应助mjsdx采纳,获得10
8秒前
阿梅梅梅发布了新的文献求助10
9秒前
Lyl完成签到 ,获得积分10
12秒前
福福完成签到,获得积分10
12秒前
好呀好呀发布了新的文献求助10
12秒前
14秒前
22秒前
CC完成签到,获得积分10
23秒前
dd完成签到 ,获得积分10
24秒前
wf完成签到,获得积分10
25秒前
单身的青柏完成签到 ,获得积分10
25秒前
科研达人发布了新的文献求助10
26秒前
甜甜的以筠完成签到 ,获得积分10
26秒前
小熊完成签到,获得积分10
27秒前
shentaii完成签到,获得积分10
28秒前
30秒前
ddk完成签到 ,获得积分10
30秒前
呼啦呼啦完成签到 ,获得积分10
31秒前
会科研的胡萝卜完成签到,获得积分10
32秒前
兰月满楼完成签到 ,获得积分10
32秒前
点墨完成签到 ,获得积分10
32秒前
lizibelle完成签到,获得积分20
33秒前
li完成签到 ,获得积分10
37秒前
孤独蘑菇完成签到 ,获得积分10
37秒前
37秒前
Hello应助max采纳,获得10
39秒前
HMG1COA完成签到 ,获得积分10
40秒前
善学以致用应助Nayvue采纳,获得10
42秒前
XXGG完成签到 ,获得积分10
42秒前
所所应助包容的奇异果采纳,获得10
43秒前
taku完成签到 ,获得积分10
44秒前
wzzznh完成签到 ,获得积分10
45秒前
冷静的访天完成签到 ,获得积分10
45秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989957
求助须知:如何正确求助?哪些是违规求助? 3532034
关于积分的说明 11256000
捐赠科研通 3270880
什么是DOI,文献DOI怎么找? 1805070
邀请新用户注册赠送积分活动 882252
科研通“疑难数据库(出版商)”最低求助积分说明 809216