Explainable Deep Learning Approaches for Risk Screening of Periodontitis

牙周炎 医学 全国健康与营养检查调查 疾病 糖尿病 环境卫生 内科学 人口 内分泌学
作者
Bosung Suh,Hee Tae Yu,Jae‐Kwan Cha,Jongeun Choi,Jin‐Woo Kim
出处
期刊:Journal of Dental Research [SAGE Publishing]
被引量:1
标识
DOI:10.1177/00220345241286488
摘要

Several pieces of evidence have been reported regarding the association between periodontitis and systemic diseases. Despite the emphasized significance of prevention and early diagnosis of periodontitis, there is still a lack of a clinical tool for early screening of this condition. Therefore, this study aims to use explainable artificial intelligence (XAI) technology to facilitate early screening of periodontitis. This is achieved by analyzing various clinical features and providing individualized risk assessment using XAI. We used 1,012 variables for a total of 30,465 participants data from National Health and Nutrition Examination Survey (NHANES). After preprocessing, 9,632 and 5,601 participants were left for all age groups and the over 50 y age group, respectively. They were used to train deep learning and machine learning models optimized for opportunistic screening and diagnosis analysis of periodontitis based on Centers for Disease Control and Prevention/ American Academy of Pediatrics case definition. Local interpretable model-agnostic explanations (LIME) were applied to evaluate potential associated factors, including demographic, lifestyle, medical, and biochemical factors. The deep learning models showed area under the curve values of 0.858 ± 0.011 for the opportunistic screening and 0.865 ± 0.008 for the diagnostic dataset, outperforming baselines. By using LIME, we elicited important features and assessed the combined impact and interpretation of each feature on individual risk. Associated factors such as age, sex, diabetes status, tissue transglutaminase, and smoking status have emerged as crucial features that are about twice as important than other features, while arthritis, sleep disorders, high blood pressure, cholesterol levels, and overweight have also been identified as contributing factors to periodontitis. The feature contribution rankings generated with XAI offered insights that align well with clinically recognized associated factors for periodontitis. These results highlight the utility of XAI in deep learning-based associated factor analysis for detecting clinically associated factors and the assistance of XAI in developing early detection and prevention strategies for periodontitis in medical checkups.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hrzmlily完成签到,获得积分10
刚刚
顽主完成签到,获得积分10
1秒前
义气访曼完成签到 ,获得积分10
2秒前
时尚战斗机完成签到,获得积分10
2秒前
4秒前
亦玉完成签到,获得积分10
4秒前
Philadelphus完成签到,获得积分20
6秒前
6秒前
wsh完成签到 ,获得积分10
7秒前
luyue9406完成签到,获得积分10
7秒前
luochen完成签到,获得积分10
7秒前
酷波er应助奶黄包采纳,获得10
8秒前
ROMANTIC完成签到 ,获得积分10
8秒前
Hancock完成签到 ,获得积分10
9秒前
luyue9406发布了新的文献求助10
10秒前
Akim应助小王采纳,获得10
10秒前
甜蜜的楷瑞应助zqfxc采纳,获得10
12秒前
Hello应助花雨落123采纳,获得10
14秒前
15秒前
16秒前
柚仝完成签到 ,获得积分10
16秒前
贾明灵完成签到,获得积分10
16秒前
未来学术司马懿应助LIUYONG采纳,获得10
17秒前
Dops完成签到,获得积分10
19秒前
票子发布了新的文献求助10
20秒前
晚风完成签到 ,获得积分10
20秒前
坚强莺发布了新的文献求助10
20秒前
无奈曼云完成签到,获得积分10
21秒前
不会吹口哨完成签到,获得积分10
21秒前
易槐完成签到,获得积分10
22秒前
情怀应助和谐的梦蕊采纳,获得10
22秒前
23秒前
喜悦的飞机完成签到,获得积分10
24秒前
24秒前
24秒前
26秒前
忘川完成签到,获得积分10
26秒前
热心市民小红花应助Nowind采纳,获得10
26秒前
Yin完成签到,获得积分10
28秒前
花雨落123发布了新的文献求助10
28秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038426
求助须知:如何正确求助?哪些是违规求助? 3576119
关于积分的说明 11374556
捐赠科研通 3305834
什么是DOI,文献DOI怎么找? 1819339
邀请新用户注册赠送积分活动 892678
科研通“疑难数据库(出版商)”最低求助积分说明 815029