已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Explainable Deep Learning Approaches for Risk Screening of Periodontitis

牙周炎 医学 全国健康与营养检查调查 疾病 糖尿病 环境卫生 内科学 人口 内分泌学
作者
Bosung Suh,Hee Tae Yu,Jae‐Kwan Cha,Jongeun Choi,Jin‐Woo Kim
出处
期刊:Journal of Dental Research [SAGE]
被引量:5
标识
DOI:10.1177/00220345241286488
摘要

Several pieces of evidence have been reported regarding the association between periodontitis and systemic diseases. Despite the emphasized significance of prevention and early diagnosis of periodontitis, there is still a lack of a clinical tool for early screening of this condition. Therefore, this study aims to use explainable artificial intelligence (XAI) technology to facilitate early screening of periodontitis. This is achieved by analyzing various clinical features and providing individualized risk assessment using XAI. We used 1,012 variables for a total of 30,465 participants data from National Health and Nutrition Examination Survey (NHANES). After preprocessing, 9,632 and 5,601 participants were left for all age groups and the over 50 y age group, respectively. They were used to train deep learning and machine learning models optimized for opportunistic screening and diagnosis analysis of periodontitis based on Centers for Disease Control and Prevention/ American Academy of Pediatrics case definition. Local interpretable model-agnostic explanations (LIME) were applied to evaluate potential associated factors, including demographic, lifestyle, medical, and biochemical factors. The deep learning models showed area under the curve values of 0.858 ± 0.011 for the opportunistic screening and 0.865 ± 0.008 for the diagnostic dataset, outperforming baselines. By using LIME, we elicited important features and assessed the combined impact and interpretation of each feature on individual risk. Associated factors such as age, sex, diabetes status, tissue transglutaminase, and smoking status have emerged as crucial features that are about twice as important than other features, while arthritis, sleep disorders, high blood pressure, cholesterol levels, and overweight have also been identified as contributing factors to periodontitis. The feature contribution rankings generated with XAI offered insights that align well with clinically recognized associated factors for periodontitis. These results highlight the utility of XAI in deep learning-based associated factor analysis for detecting clinically associated factors and the assistance of XAI in developing early detection and prevention strategies for periodontitis in medical checkups.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助Aokcers采纳,获得10
4秒前
YAN完成签到 ,获得积分10
4秒前
浮游应助sentimental采纳,获得10
5秒前
YUkiii完成签到,获得积分10
5秒前
雨下整夜完成签到,获得积分10
7秒前
7秒前
桐桐应助和谐又菡采纳,获得10
7秒前
炙热的小小完成签到 ,获得积分10
7秒前
SciGPT应助百杜采纳,获得10
8秒前
Criminology34应助毛月月采纳,获得10
8秒前
10秒前
爱笑的如霜完成签到,获得积分20
11秒前
学术五车发布了新的文献求助10
12秒前
13秒前
拾肆发布了新的文献求助10
13秒前
在下天池宫人间行走完成签到,获得积分10
13秒前
YUkiii发布了新的文献求助10
14秒前
14秒前
zai发布了新的文献求助10
14秒前
15秒前
15秒前
微笑的井完成签到 ,获得积分10
16秒前
暗中讨饭完成签到 ,获得积分10
16秒前
16秒前
16秒前
11完成签到 ,获得积分10
16秒前
Aokcers发布了新的文献求助10
18秒前
19秒前
dongdong发布了新的文献求助10
21秒前
科研通AI6应助彪壮的凡波采纳,获得10
21秒前
小王同学应助blue采纳,获得20
22秒前
22秒前
隐形曼青应助Wenyilong采纳,获得10
23秒前
23秒前
23秒前
cjg完成签到,获得积分10
24秒前
25秒前
华仔哈哈哈哈哈完成签到,获得积分10
25秒前
EvaHo完成签到,获得积分10
27秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5355699
求助须知:如何正确求助?哪些是违规求助? 4487559
关于积分的说明 13970591
捐赠科研通 4388263
什么是DOI,文献DOI怎么找? 2410970
邀请新用户注册赠送积分活动 1403518
关于科研通互助平台的介绍 1377055