清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Explainable Deep Learning Approaches for Risk Screening of Periodontitis

牙周炎 医学 全国健康与营养检查调查 疾病 糖尿病 环境卫生 内科学 人口 内分泌学
作者
Bosung Suh,Hee Tae Yu,Jae‐Kwan Cha,Jongeun Choi,Jin‐Woo Kim
出处
期刊:Journal of Dental Research [SAGE Publishing]
被引量:5
标识
DOI:10.1177/00220345241286488
摘要

Several pieces of evidence have been reported regarding the association between periodontitis and systemic diseases. Despite the emphasized significance of prevention and early diagnosis of periodontitis, there is still a lack of a clinical tool for early screening of this condition. Therefore, this study aims to use explainable artificial intelligence (XAI) technology to facilitate early screening of periodontitis. This is achieved by analyzing various clinical features and providing individualized risk assessment using XAI. We used 1,012 variables for a total of 30,465 participants data from National Health and Nutrition Examination Survey (NHANES). After preprocessing, 9,632 and 5,601 participants were left for all age groups and the over 50 y age group, respectively. They were used to train deep learning and machine learning models optimized for opportunistic screening and diagnosis analysis of periodontitis based on Centers for Disease Control and Prevention/ American Academy of Pediatrics case definition. Local interpretable model-agnostic explanations (LIME) were applied to evaluate potential associated factors, including demographic, lifestyle, medical, and biochemical factors. The deep learning models showed area under the curve values of 0.858 ± 0.011 for the opportunistic screening and 0.865 ± 0.008 for the diagnostic dataset, outperforming baselines. By using LIME, we elicited important features and assessed the combined impact and interpretation of each feature on individual risk. Associated factors such as age, sex, diabetes status, tissue transglutaminase, and smoking status have emerged as crucial features that are about twice as important than other features, while arthritis, sleep disorders, high blood pressure, cholesterol levels, and overweight have also been identified as contributing factors to periodontitis. The feature contribution rankings generated with XAI offered insights that align well with clinically recognized associated factors for periodontitis. These results highlight the utility of XAI in deep learning-based associated factor analysis for detecting clinically associated factors and the assistance of XAI in developing early detection and prevention strategies for periodontitis in medical checkups.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
狂野的含烟完成签到 ,获得积分10
39秒前
鈮宝完成签到 ,获得积分10
1分钟前
李健的粉丝团团长应助Bo采纳,获得10
1分钟前
激动的似狮完成签到,获得积分10
1分钟前
1分钟前
Miss-Li完成签到,获得积分20
1分钟前
1分钟前
瘦瘦的枫叶完成签到 ,获得积分10
1分钟前
Miss-Li发布了新的文献求助10
1分钟前
Willy完成签到,获得积分10
1分钟前
Bo发布了新的文献求助10
1分钟前
Bo完成签到,获得积分10
1分钟前
fufufu123完成签到 ,获得积分10
2分钟前
pegasus0802完成签到,获得积分10
2分钟前
小二郎应助CC采纳,获得10
3分钟前
明亮的小蘑菇完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助10
4分钟前
冉亦完成签到,获得积分10
4分钟前
加减乘除完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
王世卉完成签到,获得积分10
5分钟前
火星上惜天完成签到 ,获得积分10
5分钟前
婼汐完成签到 ,获得积分10
5分钟前
傲娇的蛋挞完成签到,获得积分10
5分钟前
5分钟前
CC发布了新的文献求助10
5分钟前
CC完成签到,获得积分10
5分钟前
席江海完成签到,获得积分0
5分钟前
冷傲半邪完成签到,获得积分10
5分钟前
禾叶完成签到 ,获得积分10
6分钟前
所所应助科研通管家采纳,获得10
7分钟前
7分钟前
lisa完成签到 ,获得积分10
7分钟前
8分钟前
8分钟前
8分钟前
月半完成签到,获得积分10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
当代中国马克思主义问题意识研究 科学出版社 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4974338
求助须知:如何正确求助?哪些是违规求助? 4229492
关于积分的说明 13172695
捐赠科研通 4018673
什么是DOI,文献DOI怎么找? 2199022
邀请新用户注册赠送积分活动 1211589
关于科研通互助平台的介绍 1126955