Explainable Deep Learning Approaches for Risk Screening of Periodontitis

牙周炎 医学 全国健康与营养检查调查 疾病 糖尿病 环境卫生 内科学 人口 内分泌学
作者
Bosung Suh,Hee Tae Yu,Jae‐Kwan Cha,Jongeun Choi,Jin‐Woo Kim
出处
期刊:Journal of Dental Research [SAGE Publishing]
被引量:1
标识
DOI:10.1177/00220345241286488
摘要

Several pieces of evidence have been reported regarding the association between periodontitis and systemic diseases. Despite the emphasized significance of prevention and early diagnosis of periodontitis, there is still a lack of a clinical tool for early screening of this condition. Therefore, this study aims to use explainable artificial intelligence (XAI) technology to facilitate early screening of periodontitis. This is achieved by analyzing various clinical features and providing individualized risk assessment using XAI. We used 1,012 variables for a total of 30,465 participants data from National Health and Nutrition Examination Survey (NHANES). After preprocessing, 9,632 and 5,601 participants were left for all age groups and the over 50 y age group, respectively. They were used to train deep learning and machine learning models optimized for opportunistic screening and diagnosis analysis of periodontitis based on Centers for Disease Control and Prevention/ American Academy of Pediatrics case definition. Local interpretable model-agnostic explanations (LIME) were applied to evaluate potential associated factors, including demographic, lifestyle, medical, and biochemical factors. The deep learning models showed area under the curve values of 0.858 ± 0.011 for the opportunistic screening and 0.865 ± 0.008 for the diagnostic dataset, outperforming baselines. By using LIME, we elicited important features and assessed the combined impact and interpretation of each feature on individual risk. Associated factors such as age, sex, diabetes status, tissue transglutaminase, and smoking status have emerged as crucial features that are about twice as important than other features, while arthritis, sleep disorders, high blood pressure, cholesterol levels, and overweight have also been identified as contributing factors to periodontitis. The feature contribution rankings generated with XAI offered insights that align well with clinically recognized associated factors for periodontitis. These results highlight the utility of XAI in deep learning-based associated factor analysis for detecting clinically associated factors and the assistance of XAI in developing early detection and prevention strategies for periodontitis in medical checkups.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
妙蛙完成签到,获得积分10
刚刚
1秒前
111111111发布了新的文献求助10
2秒前
妙蛙发布了新的文献求助10
4秒前
5秒前
爱笑紫菜发布了新的文献求助30
7秒前
7秒前
8秒前
李爱国应助111111111采纳,获得10
8秒前
tay发布了新的文献求助10
9秒前
科研通AI5应助ffff采纳,获得10
10秒前
过氧化氢发布了新的文献求助30
12秒前
感动黄豆发布了新的文献求助10
13秒前
钱宇成发布了新的文献求助10
13秒前
YJ888发布了新的文献求助10
13秒前
vincen91完成签到,获得积分10
17秒前
Leach完成签到 ,获得积分10
18秒前
长乐完成签到,获得积分10
19秒前
FashionBoy应助院士人启动采纳,获得10
23秒前
24秒前
24秒前
AptRank完成签到,获得积分10
25秒前
量子星尘发布了新的文献求助10
25秒前
焦糖布丁的滋味完成签到,获得积分10
25秒前
26秒前
隐形的觅波完成签到 ,获得积分10
27秒前
儒雅南风完成签到 ,获得积分10
28秒前
小马甲应助科研通管家采纳,获得10
29秒前
打打应助科研通管家采纳,获得10
29秒前
科研通AI5应助科研通管家采纳,获得10
29秒前
Orange应助科研通管家采纳,获得10
29秒前
Bio应助科研通管家采纳,获得30
29秒前
慕青应助科研通管家采纳,获得10
29秒前
29秒前
在水一方应助科研通管家采纳,获得10
29秒前
29秒前
Bio应助科研通管家采纳,获得50
30秒前
小马甲应助科研通管家采纳,获得10
30秒前
我是老大应助科研通管家采纳,获得10
30秒前
girl发布了新的文献求助10
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989115
求助须知:如何正确求助?哪些是违规求助? 3531367
关于积分的说明 11253688
捐赠科研通 3269986
什么是DOI,文献DOI怎么找? 1804868
邀请新用户注册赠送积分活动 882078
科研通“疑难数据库(出版商)”最低求助积分说明 809105