Explainable Deep Learning Approaches for Risk Screening of Periodontitis

牙周炎 医学 全国健康与营养检查调查 疾病 糖尿病 环境卫生 内科学 人口 内分泌学
作者
Bosung Suh,Hee Tae Yu,Jae‐Kwan Cha,Jongeun Choi,Jin‐Woo Kim
出处
期刊:Journal of Dental Research [SAGE]
标识
DOI:10.1177/00220345241286488
摘要

Several pieces of evidence have been reported regarding the association between periodontitis and systemic diseases. Despite the emphasized significance of prevention and early diagnosis of periodontitis, there is still a lack of a clinical tool for early screening of this condition. Therefore, this study aims to use explainable artificial intelligence (XAI) technology to facilitate early screening of periodontitis. This is achieved by analyzing various clinical features and providing individualized risk assessment using XAI. We used 1,012 variables for a total of 30,465 participants data from National Health and Nutrition Examination Survey (NHANES). After preprocessing, 9,632 and 5,601 participants were left for all age groups and the over 50 y age group, respectively. They were used to train deep learning and machine learning models optimized for opportunistic screening and diagnosis analysis of periodontitis based on Centers for Disease Control and Prevention/ American Academy of Pediatrics case definition. Local interpretable model-agnostic explanations (LIME) were applied to evaluate potential associated factors, including demographic, lifestyle, medical, and biochemical factors. The deep learning models showed area under the curve values of 0.858 ± 0.011 for the opportunistic screening and 0.865 ± 0.008 for the diagnostic dataset, outperforming baselines. By using LIME, we elicited important features and assessed the combined impact and interpretation of each feature on individual risk. Associated factors such as age, sex, diabetes status, tissue transglutaminase, and smoking status have emerged as crucial features that are about twice as important than other features, while arthritis, sleep disorders, high blood pressure, cholesterol levels, and overweight have also been identified as contributing factors to periodontitis. The feature contribution rankings generated with XAI offered insights that align well with clinically recognized associated factors for periodontitis. These results highlight the utility of XAI in deep learning–based associated factor analysis for detecting clinically associated factors and the assistance of XAI in developing early detection and prevention strategies for periodontitis in medical checkups.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小春完成签到,获得积分10
1秒前
xwl发布了新的文献求助10
1秒前
1秒前
kk完成签到,获得积分10
2秒前
2秒前
Susie完成签到,获得积分10
2秒前
阿千发布了新的文献求助200
2秒前
君莫笑完成签到 ,获得积分10
3秒前
3秒前
chencai完成签到,获得积分10
4秒前
xiaominza完成签到,获得积分10
4秒前
4秒前
宣幻桃完成签到 ,获得积分10
5秒前
最棒哒完成签到 ,获得积分10
5秒前
spiritpope发布了新的文献求助10
5秒前
苹果柜子完成签到,获得积分10
7秒前
端庄的珊珊完成签到,获得积分10
8秒前
脑洞疼应助小鱼采纳,获得10
10秒前
wmm完成签到,获得积分10
10秒前
一粟的粉r完成签到 ,获得积分10
10秒前
昱昱完成签到 ,获得积分10
10秒前
xwl完成签到,获得积分10
11秒前
现在就去看文献完成签到,获得积分10
11秒前
11秒前
11秒前
朴实草莓完成签到,获得积分20
11秒前
领导范儿应助Ion采纳,获得10
12秒前
顺心绮兰完成签到,获得积分10
12秒前
12秒前
duwang完成签到,获得积分10
12秒前
寒星苍梧完成签到,获得积分10
12秒前
12秒前
七哒蹦发布了新的文献求助10
12秒前
13秒前
lxy完成签到,获得积分10
14秒前
我爱科研发布了新的文献求助10
14秒前
周Z完成签到,获得积分10
14秒前
guo完成签到,获得积分10
15秒前
袁青寒发布了新的文献求助10
15秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134153
求助须知:如何正确求助?哪些是违规求助? 2785006
关于积分的说明 7769763
捐赠科研通 2440543
什么是DOI,文献DOI怎么找? 1297440
科研通“疑难数据库(出版商)”最低求助积分说明 624971
版权声明 600792