Explainable Deep Learning Approaches for Risk Screening of Periodontitis

牙周炎 医学 全国健康与营养检查调查 疾病 糖尿病 环境卫生 内科学 人口 内分泌学
作者
Bosung Suh,Hee Tae Yu,Jae‐Kwan Cha,Jongeun Choi,Jin‐Woo Kim
出处
期刊:Journal of Dental Research [SAGE]
被引量:5
标识
DOI:10.1177/00220345241286488
摘要

Several pieces of evidence have been reported regarding the association between periodontitis and systemic diseases. Despite the emphasized significance of prevention and early diagnosis of periodontitis, there is still a lack of a clinical tool for early screening of this condition. Therefore, this study aims to use explainable artificial intelligence (XAI) technology to facilitate early screening of periodontitis. This is achieved by analyzing various clinical features and providing individualized risk assessment using XAI. We used 1,012 variables for a total of 30,465 participants data from National Health and Nutrition Examination Survey (NHANES). After preprocessing, 9,632 and 5,601 participants were left for all age groups and the over 50 y age group, respectively. They were used to train deep learning and machine learning models optimized for opportunistic screening and diagnosis analysis of periodontitis based on Centers for Disease Control and Prevention/ American Academy of Pediatrics case definition. Local interpretable model-agnostic explanations (LIME) were applied to evaluate potential associated factors, including demographic, lifestyle, medical, and biochemical factors. The deep learning models showed area under the curve values of 0.858 ± 0.011 for the opportunistic screening and 0.865 ± 0.008 for the diagnostic dataset, outperforming baselines. By using LIME, we elicited important features and assessed the combined impact and interpretation of each feature on individual risk. Associated factors such as age, sex, diabetes status, tissue transglutaminase, and smoking status have emerged as crucial features that are about twice as important than other features, while arthritis, sleep disorders, high blood pressure, cholesterol levels, and overweight have also been identified as contributing factors to periodontitis. The feature contribution rankings generated with XAI offered insights that align well with clinically recognized associated factors for periodontitis. These results highlight the utility of XAI in deep learning-based associated factor analysis for detecting clinically associated factors and the assistance of XAI in developing early detection and prevention strategies for periodontitis in medical checkups.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助带善人采纳,获得10
1秒前
xingmeng发布了新的文献求助10
1秒前
Owen应助nnnd77采纳,获得10
2秒前
爆米花应助功不唐捐采纳,获得10
3秒前
3秒前
小花发布了新的文献求助10
3秒前
在水一方应助dtoakm采纳,获得10
4秒前
4秒前
5秒前
含蓄绾绾应助渊渟岳峙采纳,获得10
6秒前
9秒前
小徐完成签到 ,获得积分10
9秒前
fqf发布了新的文献求助10
10秒前
10秒前
xingmeng完成签到,获得积分10
10秒前
配言完成签到 ,获得积分10
10秒前
wang发布了新的文献求助10
10秒前
思源应助ywhys采纳,获得10
10秒前
威武的蜡烛完成签到,获得积分20
11秒前
任志政完成签到 ,获得积分10
11秒前
rebeccahu完成签到,获得积分10
13秒前
安琦发布了新的文献求助10
13秒前
Tcell完成签到,获得积分10
15秒前
功不唐捐发布了新的文献求助10
16秒前
19秒前
20秒前
隐形曼青应助cherish采纳,获得10
24秒前
ywhys发布了新的文献求助10
26秒前
26秒前
虾虾完成签到,获得积分10
27秒前
dengdengdeng发布了新的文献求助10
28秒前
boz完成签到,获得积分10
28秒前
安琦完成签到,获得积分0
28秒前
cc发布了新的文献求助10
30秒前
30秒前
大模型应助wang采纳,获得10
31秒前
32秒前
Affenyi发布了新的文献求助10
32秒前
OU完成签到,获得积分10
32秒前
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5299184
求助须知:如何正确求助?哪些是违规求助? 4447424
关于积分的说明 13842647
捐赠科研通 4333048
什么是DOI,文献DOI怎么找? 2378492
邀请新用户注册赠送积分活动 1373800
关于科研通互助平台的介绍 1339331