Explainable Deep Learning Approaches for Risk Screening of Periodontitis

牙周炎 医学 全国健康与营养检查调查 疾病 糖尿病 环境卫生 内科学 人口 内分泌学
作者
Bosung Suh,Hee Tae Yu,Jae‐Kwan Cha,Jongeun Choi,Jin‐Woo Kim
出处
期刊:Journal of Dental Research [SAGE Publishing]
被引量:5
标识
DOI:10.1177/00220345241286488
摘要

Several pieces of evidence have been reported regarding the association between periodontitis and systemic diseases. Despite the emphasized significance of prevention and early diagnosis of periodontitis, there is still a lack of a clinical tool for early screening of this condition. Therefore, this study aims to use explainable artificial intelligence (XAI) technology to facilitate early screening of periodontitis. This is achieved by analyzing various clinical features and providing individualized risk assessment using XAI. We used 1,012 variables for a total of 30,465 participants data from National Health and Nutrition Examination Survey (NHANES). After preprocessing, 9,632 and 5,601 participants were left for all age groups and the over 50 y age group, respectively. They were used to train deep learning and machine learning models optimized for opportunistic screening and diagnosis analysis of periodontitis based on Centers for Disease Control and Prevention/ American Academy of Pediatrics case definition. Local interpretable model-agnostic explanations (LIME) were applied to evaluate potential associated factors, including demographic, lifestyle, medical, and biochemical factors. The deep learning models showed area under the curve values of 0.858 ± 0.011 for the opportunistic screening and 0.865 ± 0.008 for the diagnostic dataset, outperforming baselines. By using LIME, we elicited important features and assessed the combined impact and interpretation of each feature on individual risk. Associated factors such as age, sex, diabetes status, tissue transglutaminase, and smoking status have emerged as crucial features that are about twice as important than other features, while arthritis, sleep disorders, high blood pressure, cholesterol levels, and overweight have also been identified as contributing factors to periodontitis. The feature contribution rankings generated with XAI offered insights that align well with clinically recognized associated factors for periodontitis. These results highlight the utility of XAI in deep learning-based associated factor analysis for detecting clinically associated factors and the assistance of XAI in developing early detection and prevention strategies for periodontitis in medical checkups.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ChatGPT完成签到,获得积分10
1秒前
4秒前
w婷完成签到 ,获得积分10
4秒前
lingkai完成签到 ,获得积分10
6秒前
我请问呢发布了新的文献求助10
12秒前
娃娃菜妮完成签到 ,获得积分10
16秒前
wcy完成签到 ,获得积分10
20秒前
MM发布了新的文献求助30
21秒前
优娜完成签到 ,获得积分10
23秒前
CipherSage应助健壮念寒采纳,获得10
23秒前
30秒前
小二郎应助英俊智宸采纳,获得10
40秒前
斯文败类应助SuyingGuo采纳,获得10
40秒前
量子星尘发布了新的文献求助10
42秒前
花海完成签到 ,获得积分10
47秒前
48秒前
49秒前
MM发布了新的文献求助30
52秒前
英俊智宸发布了新的文献求助10
52秒前
54秒前
sci完成签到 ,获得积分10
54秒前
Strongly发布了新的文献求助10
55秒前
科研通AI6应助科研通管家采纳,获得10
55秒前
56秒前
Aluhaer应助科研通管家采纳,获得150
56秒前
wanci应助科研通管家采纳,获得10
56秒前
清爽尔岚完成签到 ,获得积分10
58秒前
二中所长发布了新的文献求助10
1分钟前
guo完成签到,获得积分10
1分钟前
朱婷完成签到 ,获得积分10
1分钟前
冬雪完成签到 ,获得积分10
1分钟前
qing完成签到 ,获得积分10
1分钟前
1分钟前
cmh完成签到 ,获得积分10
1分钟前
英俊智宸完成签到,获得积分10
1分钟前
韭菜盒子发布了新的文献求助10
1分钟前
逢场作戱__完成签到 ,获得积分10
1分钟前
1分钟前
慕青应助韭菜盒子采纳,获得10
1分钟前
健壮念寒发布了新的文献求助10
1分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5139327
求助须知:如何正确求助?哪些是违规求助? 4338303
关于积分的说明 13512484
捐赠科研通 4177497
什么是DOI,文献DOI怎么找? 2290823
邀请新用户注册赠送积分活动 1291325
关于科研通互助平台的介绍 1233611