钝化
钙钛矿(结构)
材料科学
化学
工程物理
纳米技术
物理
结晶学
图层(电子)
作者
Yi Yang,Hao Chen,Cheng Liu,Jian Xu,Chuying Huang,Christos D. Malliakas,Haoyue Wan,Abdulaziz S. R. Bati,Zaiwei Wang,Robert P. Reynolds,Isaiah W. Gilley,Shuta Kitade,Taylor E. Wiggins,Stefan Zeiske,Selengesuren Suragtkhuu,Munkhbayar Batmunkh,Lin X. Chen,Bin Chen,Mercouri G. Kanatzidis,Edward H. Sargent
出处
期刊:Science
[American Association for the Advancement of Science (AAAS)]
日期:2024-11-21
卷期号:386 (6724): 898-902
标识
DOI:10.1126/science.adr2091
摘要
Surface passivation has driven the rapid increase in the power conversion efficiency (PCE) of perovskite solar cells (PSCs). However, state-of-the-art surface passivation techniques rely on ammonium ligands that suffer deprotonation under light and thermal stress. We developed a library of amidinium ligands, of interest for their resonance effect–enhanced N–H bonds that may resist deprotonation, to increase the thermal stability of passivation layers on perovskite surfaces. This strategy resulted in a >10-fold reduction in the ligand deprotonation equilibrium constant and a twofold increase in the maintenance of photoluminescence quantum yield after aging at 85°C under illumination in air. Implementing this approach, we achieved a certified quasi–steady-state PCE of 26.3% for inverted PSCs; and we report retention of ≥90% PCE after 1100 hours of continuous 1-sun maximum power point operation at 85°C.
科研通智能强力驱动
Strongly Powered by AbleSci AI