亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Crackwave R-convolutional neural network: A discrete wavelet transform and deep learning fusion model for underwater dam crack detection

卷积神经网络 水下 人工智能 计算机科学 深度学习 模式识别(心理学) 小波 离散小波变换 融合 小波变换 地质学 海洋学 语言学 哲学
作者
Bo Guo,Xu Li,Dezhi Li
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
标识
DOI:10.1177/14759217241308132
摘要

Crack detection is an essential part of structural health monitoring (SHM) for underwater dams, which is crucial for preventing potential structural failures and ensuring the long-term stability. Deep learning-based image processing algorithms have become a research hotspot in the field of crack detection. However, the complex underwater environment has posed challenges to underwater dam crack detection. To address these issues, we propose CrackWave R-convolutional neural network (CW R-CNN), a novel underwater dam crack detection model that fuses discrete wavelet transform (DWT) and deep learning. The proposed model introduces a novel backbone network, DwtResNet, which incorporates DWT to comprehensively extract frequency-domain features from underwater crack images. To overcome the limitations of Intersection over Union (IoU), particularly when predicted and ground truth bounding boxes do not overlap, we employ the generalized IoU (GIoU) function. Furthermore, we apply the soft nonmaximum suppression (NMS) algorithm to reduce the risk of missing fine cracks. In addition, we utilized a self-developed underwater dam image acquisition robot to capture a large number of underwater dam crack images, forming the self-acquired dataset. Evaluating the proposed model on this dataset showed that its MAP_0.5 outperformed SSD, YOLOv5, and the conventional Faster R-CNN. The proposed model proved more effective than other models, especially in detecting fine cracks and handling complex backgrounds. These experimental results not only demonstrate the effectiveness of CW R-CNN in underwater dam crack detection but also highlight its potential application in SHM. It provides essential technical support for the safe monitoring of underwater dam structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zxcv22100发布了新的文献求助10
1秒前
3秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
resetttttt完成签到 ,获得积分10
8秒前
无花果应助高高的无敌采纳,获得10
8秒前
10秒前
14秒前
科研通AI2S应助大气的谷梦采纳,获得10
14秒前
喵喵完成签到 ,获得积分10
18秒前
阿治完成签到 ,获得积分10
19秒前
19秒前
Jasper应助zxcv22100采纳,获得10
21秒前
不开心就吃糖完成签到 ,获得积分10
22秒前
迷人秋烟应助ceeray23采纳,获得50
22秒前
守护使者完成签到,获得积分20
22秒前
LYQ完成签到,获得积分10
26秒前
量子星尘发布了新的文献求助10
26秒前
lf发布了新的文献求助10
28秒前
zxcv22100完成签到,获得积分10
31秒前
脑洞疼应助ALICE采纳,获得10
32秒前
你学习了吗我学不了一点完成签到 ,获得积分10
32秒前
36秒前
竹子发布了新的文献求助10
39秒前
华仔应助苗苗会喵喵采纳,获得10
42秒前
43秒前
bji完成签到,获得积分10
43秒前
量子星尘发布了新的文献求助10
47秒前
48秒前
49秒前
执着乐双完成签到,获得积分10
49秒前
orixero应助akakns采纳,获得10
49秒前
ALICE发布了新的文献求助10
50秒前
55秒前
Talha发布了新的文献求助30
55秒前
ALICE完成签到,获得积分10
56秒前
小白RRRRRRR发布了新的文献求助10
58秒前
小橘子完成签到 ,获得积分10
59秒前
1分钟前
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3660903
求助须知:如何正确求助?哪些是违规求助? 3222117
关于积分的说明 9743559
捐赠科研通 2931648
什么是DOI,文献DOI怎么找? 1605139
邀请新用户注册赠送积分活动 757703
科研通“疑难数据库(出版商)”最低求助积分说明 734462