材料科学
空位缺陷
偶极子
光化学
产量(工程)
化学物理
结合能
联轴节(管道)
从头算
结晶学
原子物理学
化学
物理
有机化学
冶金
作者
Yang Li,Yujie Chen,Qiu Wang,Yinyue Ye,Jianshan Zeng,Zhi Liu
标识
DOI:10.1002/adma.202414994
摘要
Abstract Photocatalytic conversion of CO 2 and H 2 O into high‐value‐added C2 fuels remains a tough challenge, mainly due to the insufficient concentration of photogenerated electrons for the instability of C1 intermediates, which often tend to desorb easily and disable to form C─C bonds. In this work, photoreduction of CO 2 ‐to‐C 2 H 6 is successfully achieved by introducing adjacent C, N dual‐vacancy sites within the heptazine rings of ultrathin g‐C 3 N 4 , which results in the opening of two neighboring heptazine rings and forms a distinctive dipole‐limited domain field (DLDF) structure. In situ X‐ray photoelectron spectra and in situ fourier transform infrared spectra provide direct evidence of the rapid accumulation and transformation of C1 intermediates, especially CO * and CHO * , within the DLDF. Ab initio molecular dynamics further substantiates the role of DLDF in promoting C–C coupling between CO * and CHO * , through the analysis of interaction trajectories and energy changes of their central atoms, ultimately achieving a high yield of C 2 H 6 up to 57.86 µmol g −1 h −1 . It is for the first time to propose the concept of DLDF for significant advancement in photoreduction of CO 2 ‐to‐C2 fuel with the evident breakthrough to address the challenge of coupling carbon‐containing intermediates between active sites, offering new insights for the design of C–C coupling sites in single‐component photocatalysts.
科研通智能强力驱动
Strongly Powered by AbleSci AI