Interfacial π‐Electron Cloud Extension and Charge Transfer Between Preferable Single‐Crystalline Conjugated MOFs and Graphene for Ultrafast Pulse Generation

材料科学 超短脉冲 石墨烯 飞秒 堆积 饱和吸收 光电子学 共轭体系 纳米技术 光子学 异质结 激光器 聚合物 波长 光学 光纤激光器 有机化学 化学 物理 复合材料
作者
Heng Liu,Yixin Ding,Yingtian Xu,Yue Kuai,Jiahao Chen,He Zhang,Yunping Lan,Zhipeng Wei
出处
期刊:Advanced Materials [Wiley]
标识
DOI:10.1002/adma.202420043
摘要

Abstract 2D conjugated metal‐organic frameworks (MOFs) have attracted significant attention in various fields due to their outstanding characteristics. However, due to the strong interlayer π–π stacking interactions, the preparation of high‐quality and atomic‐scale single‐crystalline conjugated MOF structures continues to pose a significant challenge. The investigation of its nonlinear optical (NLO) property and application for ultrafast photonics is still rare. Herein, the ultrathin Cu 3 (HHTP) 2 and Ni 3 (HHTP) 2 (HHTP = 2,3,6,7,10,11‐hexahydroxytriphenylene) nanosheets (CuHHTPNs and NiHHTPNs) with single‐crystalline characteristic are prepared by surfactant‐assisted solution synthesis strategy. Moreover, the π–π stacked CuHHTPNs(NiHHTPNs)/graphene van der Waals heterostructures (CuNsG‐VHS and NiNsG‐VHS) are achieved by ultrasound‐assisted method. According to characterization analyses and theoretical simulations, this preferable stacking ultrathin van der Waals heterostructures exhibits superior π‐conjugated electron cloud extension, charge transfer, and NLO properties. Noticeably, the third‐order NLO polarizability of CuNsG‐VHS keeps in a relatively high level compared with the reported 2D saturable absorber materials in the near‐infrared wavelength range. Based on these outstanding properties, CuNsG‐VHS can serve as an excellent saturable absorber to achieve fundamental mode‐locking with femtosecond pulse duration, and high‐order harmonic mode‐locking with GHz repetition frequency. These demonstrations provide a valuable strategy for the development of promising conjugated MOFs for ultrafast photonics and advanced optoelectronic devices.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助清1031采纳,获得10
1秒前
开心听露发布了新的文献求助30
2秒前
善学以致用应助小小采纳,获得10
3秒前
cocolu应助雪白的猫咪采纳,获得10
4秒前
思源应助曹志毅采纳,获得10
4秒前
vivianxy发布了新的文献求助10
4秒前
烟花应助柚子星采纳,获得10
5秒前
linghanlan发布了新的文献求助10
5秒前
7秒前
彭于晏应助金屋藏娇采纳,获得20
7秒前
8秒前
9秒前
科研路上互帮互助,共同进步完成签到 ,获得积分10
9秒前
9秒前
星辰大海应助yulong采纳,获得10
10秒前
无花果应助文我采纳,获得10
10秒前
zm发布了新的文献求助10
10秒前
开心听露完成签到,获得积分10
13秒前
mkljl发布了新的文献求助10
14秒前
刘不器发布了新的文献求助10
14秒前
科研通AI40应助彭佳丽采纳,获得10
14秒前
16秒前
可爱的函函应助蜀黍采纳,获得40
16秒前
17秒前
dajiaozhuli完成签到,获得积分20
17秒前
wanci应助科研通管家采纳,获得10
17秒前
在水一方应助科研通管家采纳,获得30
17秒前
Lucas应助科研通管家采纳,获得10
17秒前
17秒前
传奇3应助科研通管家采纳,获得10
17秒前
桐桐应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
大模型应助科研通管家采纳,获得10
17秒前
18秒前
天天快乐应助jiangzhixia采纳,获得10
18秒前
嗯哼举报云朵求助涉嫌违规
18秒前
one完成签到,获得积分20
18秒前
19秒前
wyr525完成签到,获得积分10
19秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3471013
求助须知:如何正确求助?哪些是违规求助? 3063925
关于积分的说明 9086542
捐赠科研通 2754558
什么是DOI,文献DOI怎么找? 1511497
邀请新用户注册赠送积分活动 698420
科研通“疑难数据库(出版商)”最低求助积分说明 698347