Design and synthesis of Bi-doped NiAl-LDH/g-C3N4 heterostructure; a novel 2D/2D system for simultaneous enhanced photocatalytic degradation and fluorescence sensing of ciprofloxacin

光降解 材料科学 光催化 异质结 可见光谱 层状双氢氧化物 兴奋剂 光电子学 检出限 纳米技术 光化学 化学工程 催化作用 化学 有机化学 工程类 色谱法
作者
Fahimeh Beigi,Ali Reza Mahjoub,Amir Hossein Cheshme Khavar
出处
期刊:Applied Surface Science [Elsevier BV]
卷期号:637: 157972-157972 被引量:18
标识
DOI:10.1016/j.apsusc.2023.157972
摘要

2D systems enable new opportunities for the development of photocatalysts. Layered double hydroxides (LDHs) indicate a wide range of applications due to their tunable functional properties. Regarding the intrinsic catalytic performance and excellent electronic structure of LDHs, and physicochemical stability of g-C3N4, we innovatively propose and investigate a novel Bi-doped NiAl-LDH/g-C3N4 2D/2D heterostructure system toward visible-light-driven photocatalytic degradation and fluorescence sensing of ciprofloxacin (Cipro). Based on the electrostatic self-assembly method, LDH nanosheets were grown on the g-C3N4 surface. SEM and TEM images confirmed that the LDH nanosheets were successfully loaded on the carbon nitride's smooth surface. The most efficient composite (40%-g-C3N4/LDH) displayed 86% Cipro removal efficiency over 180 min under visible light irradiation. The main reason for the aforementioned improvement in catalytic activity was due to the intimate face-to-face contact in heterojunction between two semiconductors and increased flow of charge-carrier to the surface. As an auxiliary agent, bismuth-containing LDH can trap electrons and thus reduce carrier pairs recombination. Additionally, the prepared composite displayed excellent fluorescence sensitivity toward Cipro with a low detection limit of 3.7 nM. Our approach will provide a new perspective on designing 2D/2D heterojunctions between LDH and other two-dimensional semiconductors toward simultaneous photodegradation and detection of antibiotics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ambrose应助Desamin采纳,获得10
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
彭于彦祖应助科研通管家采纳,获得20
2秒前
汉堡包应助科研通管家采纳,获得20
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
彭于晏应助科研通管家采纳,获得10
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
SYLH应助科研通管家采纳,获得10
2秒前
华仔应助科研通管家采纳,获得10
2秒前
SYLH应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
星辰大海应助科研通管家采纳,获得10
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
乐乐应助科研通管家采纳,获得30
3秒前
蓝豆子发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
巧克力曲奇完成签到,获得积分20
4秒前
7秒前
白白白完成签到,获得积分10
7秒前
王雨薇发布了新的文献求助30
8秒前
8秒前
光亮乘云完成签到,获得积分10
8秒前
8秒前
AAACharlie发布了新的文献求助10
9秒前
蒸馏水完成签到,获得积分10
11秒前
吳某人完成签到,获得积分10
11秒前
乐乐应助ssr01采纳,获得10
12秒前
端庄大树发布了新的文献求助30
12秒前
12秒前
飘逸的念露完成签到,获得积分10
12秒前
wy.he应助XX采纳,获得10
13秒前
13秒前
13秒前
13秒前
lily发布了新的文献求助10
13秒前
15秒前
高分求助中
The organometallic chemistry of the transition metals 7th 666
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Handbook of Laboratory Animal Science 300
Where and How Use PHEs 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3701957
求助须知:如何正确求助?哪些是违规求助? 3251981
关于积分的说明 9877418
捐赠科研通 2964034
什么是DOI,文献DOI怎么找? 1625427
邀请新用户注册赠送积分活动 770018
科研通“疑难数据库(出版商)”最低求助积分说明 742722